zebra_chain/sapling/
tree.rs

1//! Note Commitment Trees.
2//!
3//! A note commitment tree is an incremental Merkle tree of fixed depth
4//! used to store note commitments that JoinSplit transfers or Spend
5//! transfers produce. Just as the unspent transaction output set (UTXO
6//! set) used in Bitcoin, it is used to express the existence of value and
7//! the capability to spend it. However, unlike the UTXO set, it is not
8//! the job of this tree to protect against double-spending, as it is
9//! append-only.
10//!
11//! A root of a note commitment tree is associated with each treestate.
12
13use std::{
14    default::Default,
15    fmt,
16    hash::{Hash, Hasher},
17    io,
18};
19
20use bitvec::prelude::*;
21use hex::ToHex;
22use incrementalmerkletree::{
23    frontier::{Frontier, NonEmptyFrontier},
24    Hashable,
25};
26
27use lazy_static::lazy_static;
28use thiserror::Error;
29use zcash_primitives::merkle_tree::HashSer;
30
31use super::commitment::pedersen_hashes::pedersen_hash;
32
33use crate::{
34    serialization::{
35        serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
36    },
37    subtree::{NoteCommitmentSubtreeIndex, TRACKED_SUBTREE_HEIGHT},
38};
39
40pub mod legacy;
41use legacy::LegacyNoteCommitmentTree;
42
43/// The type that is used to update the note commitment tree.
44///
45/// Unfortunately, this is not the same as `sapling::NoteCommitment`.
46pub type NoteCommitmentUpdate = jubjub::Fq;
47
48pub(super) const MERKLE_DEPTH: u8 = 32;
49
50/// MerkleCRH^Sapling Hash Function
51///
52/// Used to hash incremental Merkle tree hash values for Sapling.
53///
54/// MerkleCRH^Sapling(layer, left, right) := PedersenHash("Zcash_PH", l || left || right)
55/// where l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer) and
56/// left, right, and the output are all technically 255 bits (l_MerkleSapling), not 256.
57///
58/// <https://zips.z.cash/protocol/protocol.pdf#merklecrh>
59fn merkle_crh_sapling(layer: u8, left: [u8; 32], right: [u8; 32]) -> [u8; 32] {
60    let mut s = bitvec![u8, Lsb0;];
61
62    // Prefix: l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer)
63    let l = MERKLE_DEPTH - 1 - layer;
64    s.extend_from_bitslice(&BitSlice::<_, Lsb0>::from_element(&l)[0..6]);
65    s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(left)[0..255]);
66    s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(right)[0..255]);
67
68    pedersen_hash(*b"Zcash_PH", &s).to_bytes()
69}
70
71lazy_static! {
72    /// List of "empty" Sapling note commitment nodes, one for each layer.
73    ///
74    /// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf).
75    ///
76    /// <https://zips.z.cash/protocol/protocol.pdf#constants>
77    pub(super) static ref EMPTY_ROOTS: Vec<[u8; 32]> = {
78        // The empty leaf node. This is layer 32.
79        let mut v = vec![NoteCommitmentTree::uncommitted()];
80
81        // Starting with layer 31 (the first internal layer, after the leaves),
82        // generate the empty roots up to layer 0, the root.
83        for layer in (0..MERKLE_DEPTH).rev() {
84            // The vector is generated from the end, pushing new nodes to its beginning.
85            // For this reason, the layer below is v[0].
86            let next = merkle_crh_sapling(layer, v[0], v[0]);
87            v.insert(0, next);
88        }
89
90        v
91
92    };
93}
94
95/// Sapling note commitment tree root node hash.
96///
97/// The root hash in LEBS2OSP256(rt) encoding of the Sapling note
98/// commitment tree corresponding to the final Sapling treestate of
99/// this block. A root of a note commitment tree is associated with
100/// each treestate.
101#[derive(Clone, Copy, Default, Eq, Serialize, Deserialize)]
102pub struct Root(#[serde(with = "serde_helpers::Fq")] pub(crate) jubjub::Base);
103
104impl fmt::Debug for Root {
105    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
106        f.debug_tuple("Root")
107            .field(&hex::encode(self.0.to_bytes()))
108            .finish()
109    }
110}
111
112impl From<Root> for [u8; 32] {
113    fn from(root: Root) -> Self {
114        root.0.to_bytes()
115    }
116}
117
118impl From<&Root> for [u8; 32] {
119    fn from(root: &Root) -> Self {
120        (*root).into()
121    }
122}
123
124impl PartialEq for Root {
125    fn eq(&self, other: &Self) -> bool {
126        self.0 == other.0
127    }
128}
129
130impl Hash for Root {
131    fn hash<H: Hasher>(&self, state: &mut H) {
132        self.0.to_bytes().hash(state)
133    }
134}
135
136impl TryFrom<[u8; 32]> for Root {
137    type Error = SerializationError;
138
139    fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
140        let possible_point = jubjub::Base::from_bytes(&bytes);
141
142        if possible_point.is_some().into() {
143            Ok(Self(possible_point.unwrap()))
144        } else {
145            Err(SerializationError::Parse(
146                "Invalid jubjub::Base value for Sapling note commitment tree root",
147            ))
148        }
149    }
150}
151
152impl ToHex for &Root {
153    fn encode_hex<T: FromIterator<char>>(&self) -> T {
154        <[u8; 32]>::from(*self).encode_hex()
155    }
156
157    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
158        <[u8; 32]>::from(*self).encode_hex_upper()
159    }
160}
161
162impl ToHex for Root {
163    fn encode_hex<T: FromIterator<char>>(&self) -> T {
164        (&self).encode_hex()
165    }
166
167    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
168        (&self).encode_hex_upper()
169    }
170}
171
172impl ZcashSerialize for Root {
173    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
174        writer.write_all(&<[u8; 32]>::from(*self)[..])?;
175
176        Ok(())
177    }
178}
179
180impl ZcashDeserialize for Root {
181    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
182        Self::try_from(reader.read_32_bytes()?)
183    }
184}
185
186/// A node of the Sapling Incremental Note Commitment Tree.
187///
188/// Note that it's handled as a byte buffer and not a point coordinate (jubjub::Fq)
189/// because that's how the spec handles the MerkleCRH^Sapling function inputs and outputs.
190#[derive(Copy, Clone, Eq, PartialEq, Default)]
191pub struct Node([u8; 32]);
192
193impl AsRef<[u8; 32]> for Node {
194    fn as_ref(&self) -> &[u8; 32] {
195        &self.0
196    }
197}
198
199impl fmt::Display for Node {
200    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
201        f.write_str(&self.encode_hex::<String>())
202    }
203}
204
205impl fmt::Debug for Node {
206    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
207        f.debug_tuple("sapling::Node")
208            .field(&self.encode_hex::<String>())
209            .finish()
210    }
211}
212
213impl Node {
214    /// Return the node bytes in little-endian byte order suitable for printing out byte by byte.
215    ///
216    /// `zcashd`'s `z_getsubtreesbyindex` does not reverse the byte order of subtree roots.
217    pub fn bytes_in_display_order(&self) -> [u8; 32] {
218        self.0
219    }
220}
221
222impl ToHex for &Node {
223    fn encode_hex<T: FromIterator<char>>(&self) -> T {
224        self.bytes_in_display_order().encode_hex()
225    }
226
227    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
228        self.bytes_in_display_order().encode_hex_upper()
229    }
230}
231
232impl ToHex for Node {
233    fn encode_hex<T: FromIterator<char>>(&self) -> T {
234        (&self).encode_hex()
235    }
236
237    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
238        (&self).encode_hex_upper()
239    }
240}
241
242/// Required to serialize [`NoteCommitmentTree`]s in a format matching `zcashd`.
243///
244/// Zebra stores Sapling note commitment trees as [`Frontier`]s while the
245/// [`z_gettreestate`][1] RPC requires [`CommitmentTree`][2]s. Implementing
246/// [`incrementalmerkletree::Hashable`] for [`Node`]s allows the conversion.
247///
248/// [1]: https://zcash.github.io/rpc/z_gettreestate.html
249/// [2]: incrementalmerkletree::frontier::CommitmentTree
250impl HashSer for Node {
251    fn read<R: io::Read>(mut reader: R) -> io::Result<Self> {
252        let mut node = [0u8; 32];
253        reader.read_exact(&mut node)?;
254        Ok(Self(node))
255    }
256
257    fn write<W: io::Write>(&self, mut writer: W) -> io::Result<()> {
258        writer.write_all(self.0.as_ref())
259    }
260}
261
262impl Hashable for Node {
263    fn empty_leaf() -> Self {
264        Self(NoteCommitmentTree::uncommitted())
265    }
266
267    /// Combine two nodes to generate a new node in the given level.
268    /// Level 0 is the layer above the leaves (layer 31).
269    /// Level 31 is the root (layer 0).
270    fn combine(level: incrementalmerkletree::Level, a: &Self, b: &Self) -> Self {
271        let layer = MERKLE_DEPTH - 1 - u8::from(level);
272        Self(merkle_crh_sapling(layer, a.0, b.0))
273    }
274
275    /// Return the node for the level below the given level. (A quirk of the API)
276    fn empty_root(level: incrementalmerkletree::Level) -> Self {
277        let layer_below = usize::from(MERKLE_DEPTH) - usize::from(level);
278        Self(EMPTY_ROOTS[layer_below])
279    }
280}
281
282impl From<jubjub::Fq> for Node {
283    fn from(x: jubjub::Fq) -> Self {
284        Node(x.into())
285    }
286}
287
288impl TryFrom<&[u8]> for Node {
289    type Error = &'static str;
290
291    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
292        Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(
293            bytes.try_into().map_err(|_| "wrong byte slice len")?,
294        ))
295        .map(Node::from)
296        .ok_or("invalid jubjub field element")
297    }
298}
299
300impl serde::Serialize for Node {
301    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
302    where
303        S: serde::Serializer,
304    {
305        self.0.serialize(serializer)
306    }
307}
308
309impl<'de> serde::Deserialize<'de> for Node {
310    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
311    where
312        D: serde::Deserializer<'de>,
313    {
314        let bytes = <[u8; 32]>::deserialize(deserializer)?;
315        Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(&bytes))
316            .map(Node::from)
317            .ok_or_else(|| serde::de::Error::custom("invalid JubJub field element"))
318    }
319}
320
321#[derive(Error, Copy, Clone, Debug, Eq, PartialEq, Hash)]
322#[allow(missing_docs)]
323pub enum NoteCommitmentTreeError {
324    #[error("The note commitment tree is full")]
325    FullTree,
326}
327
328/// Sapling Incremental Note Commitment Tree.
329///
330/// Note that the default value of the [`Root`] type is `[0, 0, 0, 0]`. However, this value differs
331/// from the default value of the root of the default tree which is the hash of the root's child
332/// nodes. The default tree is the empty tree which has all leaves empty.
333#[derive(Debug, Serialize, Deserialize)]
334#[serde(into = "LegacyNoteCommitmentTree")]
335#[serde(from = "LegacyNoteCommitmentTree")]
336pub struct NoteCommitmentTree {
337    /// The tree represented as a [`Frontier`].
338    ///
339    /// A Frontier is a subset of the tree that allows to fully specify it.
340    /// It consists of nodes along the rightmost (newer) branch of the tree that
341    /// has non-empty nodes. Upper (near root) empty nodes of the branch are not
342    /// stored.
343    ///
344    /// # Consensus
345    ///
346    /// > [Sapling onward] A block MUST NOT add Sapling note commitments that
347    /// > would result in the Sapling note commitment tree exceeding its capacity
348    /// > of 2^(MerkleDepth^Sapling) leaf nodes.
349    ///
350    /// <https://zips.z.cash/protocol/protocol.pdf#merkletree>
351    ///
352    /// Note: MerkleDepth^Sapling = MERKLE_DEPTH = 32.
353    inner: Frontier<Node, MERKLE_DEPTH>,
354
355    /// A cached root of the tree.
356    ///
357    /// Every time the root is computed by [`Self::root`] it is cached here, and
358    /// the cached value will be returned by [`Self::root`] until the tree is
359    /// changed by [`Self::append`]. This greatly increases performance because
360    /// it avoids recomputing the root when the tree does not change between
361    /// blocks. In the finalized state, the tree is read from disk for every
362    /// block processed, which would also require recomputing the root even if
363    /// it has not changed (note that the cached root is serialized with the
364    /// tree). This is particularly important since we decided to instantiate
365    /// the trees from the genesis block, for simplicity.
366    ///
367    /// We use a [`RwLock`](std::sync::RwLock) for this cache, because it is only written once per
368    /// tree update. Each tree has its own cached root, a new lock is created
369    /// for each clone.
370    cached_root: std::sync::RwLock<Option<Root>>,
371}
372
373impl NoteCommitmentTree {
374    /// Adds a note commitment u-coordinate to the tree.
375    ///
376    /// The leaves of the tree are actually a base field element, the
377    /// u-coordinate of the commitment, the data that is actually stored on the
378    /// chain and input into the proof.
379    ///
380    /// Returns an error if the tree is full.
381    #[allow(clippy::unwrap_in_result)]
382    pub fn append(&mut self, cm_u: NoteCommitmentUpdate) -> Result<(), NoteCommitmentTreeError> {
383        if self.inner.append(cm_u.into()) {
384            // Invalidate cached root
385            let cached_root = self
386                .cached_root
387                .get_mut()
388                .expect("a thread that previously held exclusive lock access panicked");
389
390            *cached_root = None;
391
392            Ok(())
393        } else {
394            Err(NoteCommitmentTreeError::FullTree)
395        }
396    }
397
398    /// Returns frontier of non-empty tree, or None.
399    fn frontier(&self) -> Option<&NonEmptyFrontier<Node>> {
400        self.inner.value()
401    }
402
403    /// Returns the position of the most recently appended leaf in the tree.
404    ///
405    /// This method is used for debugging, use `incrementalmerkletree::Address` for tree operations.
406    pub fn position(&self) -> Option<u64> {
407        let Some(tree) = self.frontier() else {
408            // An empty tree doesn't have a previous leaf.
409            return None;
410        };
411
412        Some(tree.position().into())
413    }
414
415    /// Returns true if this tree has at least one new subtree, when compared with `prev_tree`.
416    pub fn contains_new_subtree(&self, prev_tree: &Self) -> bool {
417        // Use -1 for the index of the subtree with no notes, so the comparisons are valid.
418        let index = self.subtree_index().map_or(-1, |index| i32::from(index.0));
419        let prev_index = prev_tree
420            .subtree_index()
421            .map_or(-1, |index| i32::from(index.0));
422
423        // This calculation can't overflow, because we're using i32 for u16 values.
424        let index_difference = index - prev_index;
425
426        // There are 4 cases we need to handle:
427        // - lower index: never a new subtree
428        // - equal index: sometimes a new subtree
429        // - next index: sometimes a new subtree
430        // - greater than the next index: always a new subtree
431        //
432        // To simplify the function, we deal with the simple cases first.
433
434        // There can't be any new subtrees if the current index is strictly lower.
435        if index < prev_index {
436            return false;
437        }
438
439        // There is at least one new subtree, even if there is a spurious index difference.
440        if index_difference > 1 {
441            return true;
442        }
443
444        // If the indexes are equal, there can only be a new subtree if `self` just completed it.
445        if index == prev_index {
446            return self.is_complete_subtree();
447        }
448
449        // If `self` is the next index, check if the last note completed a subtree.
450        if self.is_complete_subtree() {
451            return true;
452        }
453
454        // Then check for spurious index differences.
455        //
456        // There is one new subtree somewhere in the trees. It is either:
457        // - a new subtree at the end of the previous tree, or
458        // - a new subtree in this tree (but not at the end).
459        //
460        // Spurious index differences happen because the subtree index only increases when the
461        // first note is added to the new subtree. So we need to exclude subtrees completed by the
462        // last note commitment in the previous tree.
463        //
464        // We also need to exclude empty previous subtrees, because the index changes to zero when
465        // the first note is added, but a subtree wasn't completed.
466        if prev_tree.is_complete_subtree() || prev_index == -1 {
467            return false;
468        }
469
470        // A new subtree was completed by a note commitment that isn't in the previous tree.
471        true
472    }
473
474    /// Returns true if the most recently appended leaf completes the subtree
475    pub fn is_complete_subtree(&self) -> bool {
476        let Some(tree) = self.frontier() else {
477            // An empty tree can't be a complete subtree.
478            return false;
479        };
480
481        tree.position()
482            .is_complete_subtree(TRACKED_SUBTREE_HEIGHT.into())
483    }
484
485    /// Returns the subtree index at [`TRACKED_SUBTREE_HEIGHT`].
486    /// This is the number of complete or incomplete subtrees that are currently in the tree.
487    /// Returns `None` if the tree is empty.
488    #[allow(clippy::unwrap_in_result)]
489    pub fn subtree_index(&self) -> Option<NoteCommitmentSubtreeIndex> {
490        let tree = self.frontier()?;
491
492        let index = incrementalmerkletree::Address::above_position(
493            TRACKED_SUBTREE_HEIGHT.into(),
494            tree.position(),
495        )
496        .index()
497        .try_into()
498        .expect("fits in u16");
499
500        Some(index)
501    }
502
503    /// Returns the number of leaf nodes required to complete the subtree at
504    /// [`TRACKED_SUBTREE_HEIGHT`].
505    ///
506    /// Returns `2^TRACKED_SUBTREE_HEIGHT` if the tree is empty.
507    #[allow(clippy::unwrap_in_result)]
508    pub fn remaining_subtree_leaf_nodes(&self) -> usize {
509        let remaining = match self.frontier() {
510            // If the subtree has at least one leaf node, the remaining number of nodes can be
511            // calculated using the maximum subtree position and the current position.
512            Some(tree) => {
513                let max_position = incrementalmerkletree::Address::above_position(
514                    TRACKED_SUBTREE_HEIGHT.into(),
515                    tree.position(),
516                )
517                .max_position();
518
519                max_position - tree.position().into()
520            }
521            // If the subtree has no nodes, the remaining number of nodes is the number of nodes in
522            // a subtree.
523            None => {
524                let subtree_address = incrementalmerkletree::Address::above_position(
525                    TRACKED_SUBTREE_HEIGHT.into(),
526                    // This position is guaranteed to be in the first subtree.
527                    0.into(),
528                );
529
530                assert_eq!(
531                    subtree_address.position_range_start(),
532                    0.into(),
533                    "address is not in the first subtree"
534                );
535
536                subtree_address.position_range_end()
537            }
538        };
539
540        u64::from(remaining).try_into().expect("fits in usize")
541    }
542
543    /// Returns subtree index and root if the most recently appended leaf completes the subtree
544    pub fn completed_subtree_index_and_root(&self) -> Option<(NoteCommitmentSubtreeIndex, Node)> {
545        if !self.is_complete_subtree() {
546            return None;
547        }
548
549        let index = self.subtree_index()?;
550        let root = self.frontier()?.root(Some(TRACKED_SUBTREE_HEIGHT.into()));
551
552        Some((index, root))
553    }
554
555    /// Returns the current root of the tree, used as an anchor in Sapling
556    /// shielded transactions.
557    pub fn root(&self) -> Root {
558        if let Some(root) = self.cached_root() {
559            // Return cached root.
560            return root;
561        }
562
563        // Get exclusive access, compute the root, and cache it.
564        let mut write_root = self
565            .cached_root
566            .write()
567            .expect("a thread that previously held exclusive lock access panicked");
568        let read_root = write_root.as_ref().cloned();
569        match read_root {
570            // Another thread got write access first, return cached root.
571            Some(root) => root,
572            None => {
573                // Compute root and cache it.
574                let root = self.recalculate_root();
575                *write_root = Some(root);
576                root
577            }
578        }
579    }
580
581    /// Returns the current root of the tree, if it has already been cached.
582    #[allow(clippy::unwrap_in_result)]
583    pub fn cached_root(&self) -> Option<Root> {
584        *self
585            .cached_root
586            .read()
587            .expect("a thread that previously held exclusive lock access panicked")
588    }
589
590    /// Calculates and returns the current root of the tree, ignoring any caching.
591    pub fn recalculate_root(&self) -> Root {
592        Root::try_from(self.inner.root().0).unwrap()
593    }
594
595    /// Gets the Jubjub-based Pedersen hash of root node of this merkle tree of
596    /// note commitments.
597    pub fn hash(&self) -> [u8; 32] {
598        self.root().into()
599    }
600
601    /// An as-yet unused Sapling note commitment tree leaf node.
602    ///
603    /// Distinct for Sapling, a distinguished hash value of:
604    ///
605    /// Uncommitted^Sapling = I2LEBSP_l_MerkleSapling(1)
606    pub fn uncommitted() -> [u8; 32] {
607        jubjub::Fq::one().to_bytes()
608    }
609
610    /// Counts of note commitments added to the tree.
611    ///
612    /// For Sapling, the tree is capped at 2^32.
613    pub fn count(&self) -> u64 {
614        self.inner
615            .value()
616            .map_or(0, |x| u64::from(x.position()) + 1)
617    }
618
619    /// Checks if the tree roots and inner data structures of `self` and `other` are equal.
620    ///
621    /// # Panics
622    ///
623    /// If they aren't equal, with a message explaining the differences.
624    ///
625    /// Only for use in tests.
626    #[cfg(any(test, feature = "proptest-impl"))]
627    pub fn assert_frontier_eq(&self, other: &Self) {
628        // It's technically ok for the cached root not to be preserved,
629        // but it can result in expensive cryptographic operations,
630        // so we fail the tests if it happens.
631        assert_eq!(self.cached_root(), other.cached_root());
632
633        // Check the data in the internal data structure
634        assert_eq!(self.inner, other.inner);
635
636        // Check the RPC serialization format (not the same as the Zebra database format)
637        assert_eq!(self.to_rpc_bytes(), other.to_rpc_bytes());
638    }
639
640    /// Serializes [`Self`] to a format matching `zcashd`'s RPCs.
641    pub fn to_rpc_bytes(&self) -> Vec<u8> {
642        // Convert the tree from [`Frontier`](incrementalmerkletree::frontier::Frontier) to
643        // [`CommitmentTree`](merkle_tree::CommitmentTree).
644        let tree = incrementalmerkletree::frontier::CommitmentTree::from_frontier(&self.inner);
645
646        let mut rpc_bytes = vec![];
647
648        zcash_primitives::merkle_tree::write_commitment_tree(&tree, &mut rpc_bytes)
649            .expect("serializable tree");
650
651        rpc_bytes
652    }
653}
654
655impl Clone for NoteCommitmentTree {
656    /// Clones the inner tree, and creates a new [`RwLock`](std::sync::RwLock)
657    /// with the cloned root data.
658    fn clone(&self) -> Self {
659        let cached_root = self.cached_root();
660
661        Self {
662            inner: self.inner.clone(),
663            cached_root: std::sync::RwLock::new(cached_root),
664        }
665    }
666}
667
668impl Default for NoteCommitmentTree {
669    fn default() -> Self {
670        Self {
671            inner: incrementalmerkletree::frontier::Frontier::empty(),
672            cached_root: Default::default(),
673        }
674    }
675}
676
677impl Eq for NoteCommitmentTree {}
678
679impl PartialEq for NoteCommitmentTree {
680    fn eq(&self, other: &Self) -> bool {
681        if let (Some(root), Some(other_root)) = (self.cached_root(), other.cached_root()) {
682            // Use cached roots if available
683            root == other_root
684        } else {
685            // Avoid expensive root recalculations which use multiple cryptographic hashes
686            self.inner == other.inner
687        }
688    }
689}
690
691impl From<Vec<jubjub::Fq>> for NoteCommitmentTree {
692    /// Computes the tree from a whole bunch of note commitments at once.
693    fn from(values: Vec<jubjub::Fq>) -> Self {
694        let mut tree = Self::default();
695
696        if values.is_empty() {
697            return tree;
698        }
699
700        for cm_u in values {
701            let _ = tree.append(cm_u);
702        }
703
704        tree
705    }
706}