1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
use std::collections::HashMap;

use crate::{Entry, EntryKind, EntryLink, Error, Version};

/// Represents partially loaded tree.
///
/// Some kind of "view" into the array representation of the MMR tree.
/// With only some of the leaves/nodes pre-loaded / pre-generated.
/// Exact amount of the loaded data can be calculated by the constructing party,
/// depending on the length of the tree and maximum amount of operations that are going
/// to happen after construction. `Tree` should not be used as self-contained data structure,
/// since it's internal state can grow indefinitely after serial operations.
/// Intended use of this `Tree` is to instantiate it based on partially loaded data (see example
/// how to pick right nodes from the array representation of MMR Tree), perform several operations
/// (append-s/delete-s) and then drop it.
pub struct Tree<V: Version> {
    stored: HashMap<u32, Entry<V>>,

    // This can grow indefinitely if `Tree` is misused as a self-contained data structure
    generated: Vec<Entry<V>>,

    // number of persistent(!) tree entries
    stored_count: u32,

    root: EntryLink,
}

impl<V: Version> Tree<V> {
    /// Resolve link originated from this tree
    pub fn resolve_link(&self, link: EntryLink) -> Result<IndexedNode<V>, Error> {
        match link {
            EntryLink::Generated(index) => self.generated.get(index as usize),
            EntryLink::Stored(index) => self.stored.get(&index),
        }
        .map(|node| IndexedNode { node, link })
        .ok_or(Error::ExpectedInMemory(link))
    }

    fn push(&mut self, data: Entry<V>) -> EntryLink {
        let idx = self.stored_count;
        self.stored_count += 1;
        self.stored.insert(idx, data);
        EntryLink::Stored(idx)
    }

    fn push_generated(&mut self, data: Entry<V>) -> EntryLink {
        self.generated.push(data);
        EntryLink::Generated(self.generated.len() as u32 - 1)
    }

    /// Populate tree with plain list of the leaves/nodes. For now, only for tests,
    /// since this `Tree` structure is for partially loaded tree (but it might change)
    #[cfg(test)]
    pub fn populate(loaded: Vec<Entry<V>>, root: EntryLink) -> Self {
        let mut result = Tree::invalid();
        result.stored_count = loaded.len() as u32;
        for (idx, item) in loaded.into_iter().enumerate() {
            result.stored.insert(idx as u32, item);
        }
        result.root = root;

        result
    }

    // Empty tree with invalid root
    fn invalid() -> Self {
        Tree {
            root: EntryLink::Generated(0),
            generated: Default::default(),
            stored: Default::default(),
            stored_count: 0,
        }
    }

    /// New view into the the tree array representation
    ///
    /// `length` is total length of the array representation (is generally not a sum of
    ///     peaks.len + extra.len)
    /// `peaks` is peaks of the mmr tree
    /// `extra` is some extra nodes that calculated to be required during next one or more
    /// operations on the tree.
    ///
    /// # Panics
    ///
    /// Will panic if `peaks` is empty.
    pub fn new(length: u32, peaks: Vec<(u32, Entry<V>)>, extra: Vec<(u32, Entry<V>)>) -> Self {
        assert!(!peaks.is_empty());

        let mut result = Tree::invalid();

        result.stored_count = length;

        let mut root = EntryLink::Stored(peaks[0].0);
        for (gen, (idx, node)) in peaks.into_iter().enumerate() {
            result.stored.insert(idx, node);
            if gen != 0 {
                let next_generated = combine_nodes(
                    result
                        .resolve_link(root)
                        .expect("Inserted before, cannot fail; qed"),
                    result
                        .resolve_link(EntryLink::Stored(idx))
                        .expect("Inserted before, cannot fail; qed"),
                );
                root = result.push_generated(next_generated);
            }
        }

        for (idx, node) in extra {
            result.stored.insert(idx, node);
        }

        result.root = root;

        result
    }

    fn get_peaks(&self, root: EntryLink, target: &mut Vec<EntryLink>) -> Result<(), Error> {
        let (left_child_link, right_child_link) = {
            let root = self.resolve_link(root)?;
            if root.node.complete() {
                target.push(root.link);
                return Ok(());
            }
            (root.left()?, root.right()?)
        };

        self.get_peaks(left_child_link, target)?;
        self.get_peaks(right_child_link, target)?;
        Ok(())
    }

    /// Append one leaf to the tree.
    ///
    /// Returns links to actual nodes that has to be persisted as the result of the append.
    /// If completed without error, at least one link to the appended
    /// node (with metadata provided in `new_leaf`) will be returned.
    pub fn append_leaf(&mut self, new_leaf: V::NodeData) -> Result<Vec<EntryLink>, Error> {
        let root = self.root;
        let new_leaf_link = self.push(Entry::new_leaf(new_leaf));
        let mut appended = vec![new_leaf_link];

        let mut peaks = Vec::new();
        self.get_peaks(root, &mut peaks)?;

        let mut merge_stack = vec![new_leaf_link];

        // Scan the peaks right-to-left, merging together equal-sized adjacent
        // complete subtrees. After this, merge_stack only contains peaks of
        // unequal-sized subtrees.
        while let Some(next_peak) = peaks.pop() {
            let next_merge = merge_stack
                .pop()
                .expect("there should be at least one, initial or re-pushed");

            if let Some(stored) = {
                let peak = self.resolve_link(next_peak)?;
                let m = self.resolve_link(next_merge)?;
                if peak.node.leaf_count() == m.node.leaf_count() {
                    Some(combine_nodes(peak, m))
                } else {
                    None
                }
            } {
                let link = self.push(stored);
                merge_stack.push(link);
                appended.push(link);
                continue;
            } else {
                merge_stack.push(next_merge);
                merge_stack.push(next_peak);
            }
        }

        let mut new_root = merge_stack
            .pop()
            .expect("Loop above cannot reduce the merge_stack");
        // Scan the peaks left-to-right, producing new generated nodes that
        // connect the subtrees
        while let Some(next_child) = merge_stack.pop() {
            new_root = self.push_generated(combine_nodes(
                self.resolve_link(new_root)?,
                self.resolve_link(next_child)?,
            ))
        }

        self.root = new_root;

        Ok(appended)
    }

    #[cfg(test)]
    fn for_children<F: Fn(EntryLink, EntryLink)>(&self, node: EntryLink, f: F) {
        let (left, right) = {
            let link = self
                .resolve_link(node)
                .expect("Failed to resolve link in test");
            (
                link.left().expect("Failed to find node in test"),
                link.right().expect("Failed to find node in test"),
            )
        };
        f(left, right);
    }

    fn pop(&mut self) {
        self.stored.remove(&(self.stored_count - 1));
        self.stored_count -= 1;
    }

    /// Truncate one leaf from the end of the tree.
    ///
    /// Returns actual number of nodes that should be removed by the caller
    /// from the end of the array representation.
    pub fn truncate_leaf(&mut self) -> Result<u32, Error> {
        let root = {
            let (leaves, root_left_child) = {
                let n = self.resolve_link(self.root)?;
                (n.node.leaf_count(), n.node.left()?)
            };
            if leaves & 1 != 0 {
                self.pop();
                self.root = root_left_child;
                return Ok(1);
            } else {
                self.resolve_link(self.root)?
            }
        };

        let mut peaks = vec![root.left()?];
        let mut subtree_root_link = root.right()?;
        let mut truncated = 1;

        loop {
            let left_link = self.resolve_link(subtree_root_link)?.node;
            if let EntryKind::Node(left, right) = left_link.kind {
                peaks.push(left);
                subtree_root_link = right;
                truncated += 1;
            } else {
                if root.node.complete() {
                    truncated += 1;
                }
                break;
            }
        }

        let mut new_root = *peaks.get(0).expect("At lest 1 elements in peaks");

        for next_peak in peaks.into_iter().skip(1) {
            new_root = self.push_generated(combine_nodes(
                self.resolve_link(new_root)?,
                self.resolve_link(next_peak)?,
            ));
        }

        for _ in 0..truncated {
            self.pop();
        }

        self.root = new_root;

        Ok(truncated)
    }

    /// Length of array representation of the tree.
    pub fn len(&self) -> u32 {
        self.stored_count
    }

    /// Link to the root node
    pub fn root(&self) -> EntryLink {
        self.root
    }

    /// Reference to the root node.
    pub fn root_node(&self) -> Result<IndexedNode<V>, Error> {
        self.resolve_link(self.root)
    }

    /// If this tree is empty.
    pub fn is_empty(&self) -> bool {
        self.stored_count == 0
    }
}

/// Reference to the node with link attached.
#[derive(Debug)]
pub struct IndexedNode<'a, V: Version> {
    node: &'a Entry<V>,
    link: EntryLink,
}

impl<'a, V: Version> IndexedNode<'a, V> {
    fn left(&self) -> Result<EntryLink, Error> {
        self.node.left().map_err(|e| e.augment(self.link))
    }

    fn right(&self) -> Result<EntryLink, Error> {
        self.node.right().map_err(|e| e.augment(self.link))
    }

    /// Reference to the entry struct.
    pub fn node(&self) -> &Entry<V> {
        self.node
    }

    /// Reference to the entry metadata.
    pub fn data(&self) -> &V::NodeData {
        &self.node.data
    }

    /// Actual link by what this node was resolved.
    pub fn link(&self) -> EntryLink {
        self.link
    }
}

fn combine_nodes<'a, V: Version>(left: IndexedNode<'a, V>, right: IndexedNode<'a, V>) -> Entry<V> {
    Entry {
        kind: EntryKind::Node(left.link, right.link),
        data: V::combine(&left.node.data, &right.node.data),
    }
}

#[cfg(test)]
mod tests {
    use super::{Entry, EntryKind, EntryLink, Tree};
    use crate::{node_data, NodeData, Version, V2};

    use assert_matches::assert_matches;
    use proptest::prelude::*;

    fn leaf(height: u32) -> node_data::V2 {
        node_data::V2 {
            v1: NodeData {
                consensus_branch_id: 1,
                subtree_commitment: [0u8; 32],
                start_time: 0,
                end_time: 0,
                start_target: 0,
                end_target: 0,
                start_sapling_root: [0u8; 32],
                end_sapling_root: [0u8; 32],
                subtree_total_work: 0.into(),
                start_height: height as u64,
                end_height: height as u64,
                sapling_tx: 7,
            },
            start_orchard_root: [0u8; 32],
            end_orchard_root: [0u8; 32],
            orchard_tx: 42,
        }
    }

    fn initial() -> Tree<V2> {
        let node1 = Entry::new_leaf(leaf(1));
        let node2 = Entry::new_leaf(leaf(2));

        let node3 = Entry {
            data: V2::combine(&node1.data, &node2.data),
            kind: EntryKind::Leaf,
        };

        Tree::populate(vec![node1, node2, node3], EntryLink::Stored(2))
    }

    // returns tree with specified number of leafs and it's root
    fn generated(length: u32) -> Tree<V2> {
        assert!(length >= 3);
        let mut tree = initial();
        for i in 2..length {
            tree.append_leaf(leaf(i + 1)).expect("Failed to append");
        }

        tree
    }

    #[test]
    fn discrete_append() {
        let mut tree = initial();

        // ** APPEND 3 **
        let appended = tree.append_leaf(leaf(3)).expect("Failed to append");
        let new_root = tree.root_node().expect("Failed to resolve root").node;

        // initial tree:  (2)
        //               /   \
        //             (0)   (1)
        //
        // new tree:
        //                (4g)
        //               /   \
        //             (2)    \
        //             /  \    \
        //           (0)  (1)  (3)
        //
        // so only (3) is added as real leaf
        // while new root, (4g) is generated one
        assert_eq!(new_root.data.v1.end_height, 3);
        assert_eq!(appended.len(), 1);

        // ** APPEND 4 **
        let appended = tree.append_leaf(leaf(4)).expect("Failed to append");

        let new_root = tree.root_node().expect("Failed to resolve root").node;

        // intermediate tree:
        //                (4g)
        //               /   \
        //             (2)    \
        //             /  \    \
        //           (0)  (1)  (3)
        //
        // new tree:
        //                 ( 6 )
        //                /     \
        //             (2)       (5)
        //             /  \     /   \
        //           (0)  (1) (3)   (4)
        //
        // so (4), (5), (6) are added as real leaves
        // and new root, (6) is stored one
        assert_eq!(new_root.data.v1.end_height, 4);
        assert_eq!(appended.len(), 3);
        assert_matches!(tree.root(), EntryLink::Stored(6));

        // ** APPEND 5 **

        let appended = tree.append_leaf(leaf(5)).expect("Failed to append");
        let new_root = tree.root_node().expect("Failed to resolve root").node;

        // intermediate tree:
        //                 ( 6 )
        //                /     \
        //             (2)       (5)
        //             /  \     /   \
        //           (0)  (1) (3)   (4)
        //
        // new tree:
        //                     ( 8g )
        //                    /      \
        //                 ( 6 )      \
        //                /     \      \
        //             (2)       (5)    \
        //             /  \     /   \    \
        //           (0)  (1) (3)   (4)  (7)
        //
        // so (7) is added as real leaf
        // and new root, (8g) is generated one
        assert_eq!(new_root.data.v1.end_height, 5);
        assert_eq!(appended.len(), 1);
        assert_matches!(tree.root(), EntryLink::Generated(_));
        tree.for_children(tree.root(), |l, r| {
            assert_matches!(l, EntryLink::Stored(6));
            assert_matches!(r, EntryLink::Stored(7));
        });

        // *** APPEND #6 ***
        let appended = tree.append_leaf(leaf(6)).expect("Failed to append");
        let new_root = tree.root_node().expect("Failed to resolve root").node;

        // intermediate tree:
        //                     ( 8g )
        //                    /      \
        //                 ( 6 )      \
        //                /     \      \
        //             (2)       (5)    \
        //             /  \     /   \    \
        //           (0)  (1) (3)   (4)  (7)
        //
        // new tree:
        //                     (---10g--)
        //                    /          \
        //                 ( 6 )          \
        //                /     \          \
        //             (2)       (5)       (9)
        //             /  \     /   \     /   \
        //           (0)  (1) (3)   (4)  (7)  (8)
        //
        // so (7) is added as real leaf
        // and new root, (10g) is generated one
        assert_eq!(new_root.data.v1.end_height, 6);
        assert_eq!(appended.len(), 2);
        assert_matches!(tree.root(), EntryLink::Generated(_));
        tree.for_children(tree.root(), |l, r| {
            assert_matches!(l, EntryLink::Stored(6));
            assert_matches!(r, EntryLink::Stored(9));
        });

        // *** APPEND #7 ***

        let appended = tree.append_leaf(leaf(7)).expect("Failed to append");
        let new_root = tree.root_node().expect("Failed to resolve root").node;

        // intermediate tree:
        //                     (---8g---)
        //                    /          \
        //                 ( 6 )          \
        //                /     \          \
        //             (2)       (5)       (9)
        //             /  \     /   \     /   \
        //           (0)  (1) (3)   (4)  (7)  (8)
        //
        // new tree:
        //                          (---12g--)
        //                         /          \
        //                    (---11g---)      \
        //                   /           \      \
        //                 ( 6 )          \      \
        //                /     \          \      \
        //             (2)       (5)       (9)     \
        //             /  \     /   \     /   \     \
        //           (0)  (1) (3)   (4) (7)   (8)  (10)
        //
        // so (10) is added as real leaf
        // and new root, (12g) is generated one
        assert_eq!(new_root.data.v1.end_height, 7);
        assert_eq!(appended.len(), 1);
        assert_matches!(tree.root(), EntryLink::Generated(_));
        tree.for_children(tree.root(), |l, r| {
            assert_matches!(l, EntryLink::Generated(_));
            tree.for_children(l, |l, r| {
                assert_matches!((l, r), (EntryLink::Stored(6), EntryLink::Stored(9)))
            });
            assert_matches!(r, EntryLink::Stored(10));
        });
    }

    #[test]
    fn truncate_simple() {
        let mut tree = generated(9);
        let total_truncated = tree.truncate_leaf().expect("Failed to truncate");

        // initial tree:
        //
        //                               (-------16g------)
        //                              /                  \
        //                    (--------14-------)           \
        //                   /                   \           \
        //                 ( 6 )              (  13  )        \
        //                /     \            /        \        \
        //             (2)       (5)       (9)        (12)      \
        //             /  \     /   \     /   \      /    \      \
        //           (0)  (1) (3)   (4) (7)   (8)  (10)  (11)    (15)
        //
        // new tree:
        //                    (--------14-------)
        //                   /                   \
        //                 ( 6 )              (  13  )
        //                /     \            /        \
        //             (2)       (5)       (9)        (12)
        //             /  \     /   \     /   \      /    \
        //           (0)  (1) (3)   (4) (7)   (8)  (10)  (11)
        //
        // so (15) is truncated
        // and new root, (14) is a stored one now

        assert_matches!(tree.root(), EntryLink::Stored(14));
        assert_eq!(total_truncated, 1);
        assert_eq!(tree.len(), 15);
    }

    #[test]
    fn truncate_generated() {
        let mut tree = generated(10);
        let deleted = tree.truncate_leaf().expect("Failed to truncate");

        // initial tree:
        //
        //                               (--------18g--------)
        //                              /                     \
        //                    (--------14-------)              \
        //                   /                   \              \
        //                 ( 6 )              (  13  )           \
        //                /     \            /        \           \
        //             (2)       (5)       (9)        (12)        (17)
        //             /  \     /   \     /   \      /    \      /    \
        //           (0)  (1) (3)   (4) (7)   (8)  (10)  (11)  (15)  (16)
        //
        // new tree:
        //                               (-------16g------)
        //                              /                  \
        //                    (--------14-------)           \
        //                   /                   \           \
        //                 ( 6 )              (  13  )        \
        //                /     \            /        \        \
        //             (2)       (5)       (9)        (12)      \
        //             /  \     /   \     /   \      /    \      \
        //           (0)  (1) (3)   (4) (7)   (8)  (10)  (11)    (15)

        // new root is generated

        assert_matches!(tree.root(), EntryLink::Generated(_));

        tree.for_children(tree.root(), |left, right| {
            assert_matches!(
                (left, right),
                (EntryLink::Stored(14), EntryLink::Stored(15))
            )
        });

        // two stored nodes should leave us (leaf 16 and no longer needed node 17)
        assert_eq!(deleted, 2);
        assert_eq!(tree.len(), 16);
    }

    #[test]
    fn tree_len() {
        let mut tree = initial();

        assert_eq!(tree.len(), 3);

        for i in 0..2 {
            tree.append_leaf(leaf(i + 3)).expect("Failed to append");
        }
        assert_eq!(tree.len(), 7);

        tree.truncate_leaf().expect("Failed to truncate");

        assert_eq!(tree.len(), 4);
    }

    #[test]
    fn tree_len_long() {
        let mut tree = initial();

        assert_eq!(tree.len(), 3);

        for i in 0..4094 {
            tree.append_leaf(leaf(i + 3)).expect("Failed to append");
        }
        assert_eq!(tree.len(), 8191); // 4096*2-1 (full tree)

        for _ in 0..2049 {
            tree.truncate_leaf().expect("Failed to truncate");
        }

        assert_eq!(tree.len(), 4083); // 4095 - log2(4096)
    }

    proptest! {
        #[test]
        fn prop_there_and_back(number in 0u32..=1024) {
            let mut tree = initial();
            for i in 0..number {
                tree.append_leaf(leaf(i+3)).expect("Failed to append");
            }
            for _ in 0..number {
                tree.truncate_leaf().expect("Failed to truncate");
            }

            assert_matches!(tree.root(), EntryLink::Stored(2));
        }

        #[test]
        fn prop_leaf_count(number in 3u32..=1024) {
            let mut tree = initial();
            for i in 1..(number-1) {
                tree.append_leaf(leaf(i+2)).expect("Failed to append");
            }

            assert_eq!(tree.root_node().expect("no root").node.leaf_count(), number as u64);
        }

        #[test]
        fn prop_parity(number in 3u32..=2048) {
            let mut tree = initial();
            for i in 1..(number-1) {
                tree.append_leaf(leaf(i+2)).expect("Failed to append");
            }

            if number & (number - 1) == 0 {
                assert_matches!(tree.root(), EntryLink::Stored(_));
            } else {
                assert_matches!(tree.root(), EntryLink::Generated(_));
            }
        }

        #[test]
        fn prop_parity_with_truncate(
            add_and_delete in (0u32..=2048).prop_flat_map(
                |add| (Just(add), 0..=add)
            )
        ) {
            let (add, delete) = add_and_delete;
            // First we add `add` number of leaves, then delete `delete` number of leaves
            // What is left should be consistent with generated-stored structure
            let mut tree = initial();
            for i in 0..add {
                tree.append_leaf(leaf(i+3)).expect("Failed to append");
            }
            for _ in 0..delete {
                tree.truncate_leaf().expect("Failed to truncate");
            }

            let total = add - delete + 2;

            if total & (total - 1) == 0 {
                assert_matches!(tree.root(), EntryLink::Stored(_));
            } else {
                assert_matches!(tree.root(), EntryLink::Generated(_));
            }
        }

        #[test]
        fn prop_stored_length(
            add_and_delete in (0u32..=2048).prop_flat_map(
                |add| (Just(add), 0..=add)
            )
        ) {
            let (add, delete) = add_and_delete;
            let mut tree = initial();
            for i in 0..add {
                tree.append_leaf(leaf(i+3)).expect("Failed to append");
            }
            for _ in 0..delete {
                tree.truncate_leaf().expect("Failed to truncate");
            }

            let total = add - delete + 2;

            assert!(total * total > tree.len())
        }
    }
}