Struct zarrs::array_subset::ArraySubset

source ·
pub struct ArraySubset { /* private fields */ }
Expand description

An array subset.

The unsafe _unchecked methods are mostly intended for internal use to avoid redundant input validation.

Implementations§

source§

impl ArraySubset

source

pub fn new_empty(dimensionality: usize) -> Self

Create a new empty array subset.

source

pub fn new_with_ranges(ranges: &[Range<u64>]) -> Self

Create a new array subset from a ranges.

Examples found in repository?
examples/http_array_read.rs (line 53)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
fn http_array_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::Array,
        array_subset::ArraySubset,
        storage::{
            storage_transformer::{StorageTransformerExtension, UsageLogStorageTransformer},
            store,
        },
    };

    const HTTP_URL: &str =
        "https://raw.githubusercontent.com/LDeakin/zarrs/main/tests/data/array_write_read.zarr";
    const ARRAY_PATH: &str = "/group/array";

    // Create a HTTP store
    let mut store: ReadableStorage = Arc::new(store::HTTPStore::new(HTTP_URL)?);
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log.clone().create_readable_transformer(store);
        }
    }

    // Init the existing array, reading metadata
    let array = Array::new(store, ARRAY_PATH)?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a chunk back from the store
    let chunk_indices = vec![1, 0];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<f32>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    Ok(())
}
More examples
Hide additional examples
examples/rectangular_array_write_read.rs (line 116)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
fn rectangular_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use rayon::prelude::{IntoParallelIterator, ParallelIterator};
    use zarrs::array::ChunkGrid;
    use zarrs::{
        array::{chunk_grid::RectangularChunkGrid, codec, FillValue},
        node::Node,
    };
    use zarrs::{
        array::{DataType, ZARR_NAN_F32},
        array_subset::ArraySubset,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    let mut store: ReadableWritableListableStorage = std::sync::Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        ChunkGrid::new(RectangularChunkGrid::new(&[
            [1, 2, 3, 2].try_into()?,
            4.try_into()?,
        ])),
        FillValue::from(ZARR_NAN_F32),
    )
    .bytes_to_bytes_codecs(vec![
        #[cfg(feature = "gzip")]
        Box::new(codec::GzipCodec::new(5)?),
    ])
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    // Write some chunks (in parallel)
    (0..4).into_par_iter().try_for_each(|i| {
        let chunk_grid = array.chunk_grid();
        let chunk_indices = vec![i, 0];
        if let Some(chunk_shape) = chunk_grid.chunk_shape(&chunk_indices, array.shape())? {
            let chunk_array = ndarray::ArrayD::<f32>::from_elem(
                chunk_shape
                    .iter()
                    .map(|u| u.get() as usize)
                    .collect::<Vec<_>>(),
                i as f32,
            );
            array.store_chunk_ndarray(&chunk_indices, chunk_array)
        } else {
            Err(zarrs::array::ArrayError::InvalidChunkGridIndicesError(
                chunk_indices.to_vec(),
            ))
        }
    })?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write a subset spanning multiple chunks, including updating chunks already written
    array.store_array_subset_ndarray(
        &[3, 3], // start
        ndarray::ArrayD::<f32>::from_shape_vec(
            vec![3, 3],
            vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
        )?,
    )?;

    // Store elements directly, in this case set the 7th column to 123.0
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[0..8, 6..7]),
        vec![123.0; 8],
    )?;

    // Store elements directly in a chunk, in this case set the last row of the bottom right chunk
    array.store_chunk_subset_elements::<f32>(
        // chunk indices
        &[3, 1],
        // subset within chunk
        &ArraySubset::new_with_ranges(&[1..2, 0..4]),
        vec![-4.0; 4],
    )?;

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a chunk back from the store
    let chunk_indices = vec![1, 0];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<f32>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("The zarr hierarchy tree is:\n{tree}");

    Ok(())
}
examples/array_write_read.rs (line 98)
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_elements(
            &chunk_indices,
            vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    array.store_chunks_elements::<f32>(
        &ArraySubset::new_with_ranges(&[1..2, 0..2]),
        vec![
            //
            1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
            //
            1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
        ],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[3..6, 3..6]),
        vec![-3.3, -3.4, -3.5, -4.3, -4.4, -4.5, -5.3, -5.4, -5.5],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[0..8, 6..7]),
        vec![-0.6, -1.6, -2.6, -3.6, -4.6, -5.6, -6.6, -7.6],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    array.store_chunk_subset_elements::<f32>(
        // chunk indices
        &[1, 1],
        // subset within chunk
        &ArraySubset::new_with_ranges(&[3..4, 0..4]),
        vec![-7.4, -7.5, -7.6, -7.7],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
examples/sharded_array_write_read.rs (line 122)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
fn sharded_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use zarrs::{
        array::{
            codec::{self, array_to_bytes::sharding::ShardingCodecBuilder},
            DataType, FillValue,
        },
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    use rayon::prelude::{IntoParallelIterator, ParallelIterator};
    use std::sync::Arc;

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new("tests/data/sharded_array_write_read.zarr")?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    // Create an array
    let array_path = "/group/array";
    let shard_shape = vec![4, 8];
    let inner_chunk_shape = vec![4, 4];
    let mut sharding_codec_builder =
        ShardingCodecBuilder::new(inner_chunk_shape.as_slice().try_into()?);
    sharding_codec_builder.bytes_to_bytes_codecs(vec![
        #[cfg(feature = "gzip")]
        Box::new(codec::GzipCodec::new(5)?),
    ]);
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::UInt16,
        shard_shape.try_into()?,
        FillValue::from(0u16),
    )
    .array_to_bytes_codec(Box::new(sharding_codec_builder.build()))
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    // The array metadata is
    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some shards (in parallel)
    (0..2).into_par_iter().try_for_each(|s| {
        let chunk_grid = array.chunk_grid();
        let chunk_indices = vec![s, 0];
        if let Some(chunk_shape) = chunk_grid.chunk_shape(&chunk_indices, array.shape())? {
            let chunk_array = ndarray::ArrayD::<u16>::from_shape_fn(
                chunk_shape
                    .iter()
                    .map(|u| u.get() as usize)
                    .collect::<Vec<_>>(),
                |ij| {
                    (s * chunk_shape[0].get() * chunk_shape[1].get()
                        + ij[0] as u64 * chunk_shape[1].get()
                        + ij[1] as u64) as u16
                },
            );
            array.store_chunk_ndarray(&chunk_indices, chunk_array)
        } else {
            Err(zarrs::array::ArrayError::InvalidChunkGridIndicesError(
                chunk_indices.to_vec(),
            ))
        }
    })?;

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec()); // the center 4x2 region
    let data_all = array.retrieve_array_subset_ndarray::<u16>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a shard back from the store
    let shard_indices = vec![1, 0];
    let data_shard = array.retrieve_chunk_ndarray::<u16>(&shard_indices)?;
    println!("Shard [1,0] is:\n{data_shard}\n");

    // Read an inner chunk from the store
    let subset_chunk_1_0 = ArraySubset::new_with_ranges(&[4..8, 0..4]);
    let data_chunk = array.retrieve_array_subset_ndarray::<u16>(&subset_chunk_1_0)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<u16>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    // Decode inner chunks
    // In some cases, it might be preferable to decode inner chunks in a shard directly.
    // If using the partial decoder, then the shard index will only be read once from the store.
    let partial_decoder = array.partial_decoder(&[0, 0])?;
    let inner_chunks_to_decode = vec![
        ArraySubset::new_with_start_shape(vec![0, 0], inner_chunk_shape.clone())?,
        ArraySubset::new_with_start_shape(vec![0, 4], inner_chunk_shape.clone())?,
    ];
    let decoded_inner_chunks_bytes = partial_decoder.partial_decode(&inner_chunks_to_decode)?;
    let decoded_inner_chunks_ndarray = decoded_inner_chunks_bytes
        .into_iter()
        .map(|bytes| bytes_to_ndarray::<u16>(&inner_chunk_shape, bytes))
        .collect::<Result<Vec<_>, _>>()?;
    println!("Decoded inner chunks:");
    for (inner_chunk_subset, decoded_inner_chunk) in
        std::iter::zip(inner_chunks_to_decode, decoded_inner_chunks_ndarray)
    {
        println!("{inner_chunk_subset}\n{decoded_inner_chunk}\n");
    }

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("The zarr hierarchy tree is:\n{}", tree);

    println!(
        "The keys in the store are:\n[{}]",
        store.list().unwrap_or_default().iter().format(", ")
    );

    Ok(())
}
examples/array_write_read_ndarray.rs (line 108)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_ndarray(
            &chunk_indices,
            ArrayD::<f32>::from_shape_vec(
                chunk_subset.shape_usize(),
                vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
            .unwrap(),
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    let ndarray_chunks: Array2<f32> = array![
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
    ];
    array.store_chunks_ndarray(&ArraySubset::new_with_ranges(&[1..2, 0..2]), ndarray_chunks)?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    let ndarray_subset: Array2<f32> =
        array![[-3.3, -3.4, -3.5,], [-4.3, -4.4, -4.5,], [-5.3, -5.4, -5.5],];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[3..6, 3..6]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    let ndarray_subset: Array2<f32> = array![
        [-0.6],
        [-1.6],
        [-2.6],
        [-3.6],
        [-4.6],
        [-5.6],
        [-6.6],
        [-7.6],
    ];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[0..8, 6..7]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    let ndarray_chunk_subset: Array2<f32> = array![[-7.4, -7.5, -7.6, -7.7],];
    array.store_chunk_subset_ndarray(
        // chunk indices
        &[1, 1],
        // subset within chunk
        ArraySubset::new_with_ranges(&[3..4, 0..4]).start(),
        ndarray_chunk_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
examples/async_array_write_read.rs (line 114)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
async fn async_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use futures::{stream::FuturesUnordered, StreamExt};
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::AsyncFilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::AsyncFilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: AsyncReadableWritableListableStorage = Arc::new(store::AsyncObjectStore::new(
        object_store::memory::InMemory::new(),
    ));
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_async_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.async_store_metadata().await?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata())?
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.async_store_metadata().await?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata())?
    );

    // Write some chunks
    let subsets = (0..2)
        .map(|i| {
            let chunk_indices: Vec<u64> = vec![0, i];
            array
                .chunk_grid()
                .subset(&chunk_indices, array.shape())?
                .ok_or_else(|| {
                    zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
                })
                .map(|chunk_subset| (i, chunk_indices, chunk_subset))
        })
        .collect::<Result<Vec<_>, _>>()?;
    let mut futures = subsets
        .iter()
        .map(|(i, chunk_indices, chunk_subset)| {
            array.async_store_chunk_elements(
                &chunk_indices,
                vec![*i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
        })
        .collect::<FuturesUnordered<_>>();
    while let Some(item) = futures.next().await {
        item?;
    }

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    array
        .async_store_chunks_elements::<f32>(
            &ArraySubset::new_with_ranges(&[1..2, 0..2]),
            vec![
                //
                1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
                //
                1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
            ],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    array
        .async_store_array_subset_elements::<f32>(
            &ArraySubset::new_with_ranges(&[3..6, 3..6]),
            vec![-3.3, -3.4, -3.5, -4.3, -4.4, -4.5, -5.3, -5.4, -5.5],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    array
        .async_store_array_subset_elements::<f32>(
            &ArraySubset::new_with_ranges(&[0..8, 6..7]),
            vec![-0.6, -1.6, -2.6, -3.6, -4.6, -5.6, -6.6, -7.6],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    array
        .async_store_chunk_subset_elements::<f32>(
            // chunk indices
            &[1, 1],
            // subset within chunk
            &ArraySubset::new_with_ranges(&[3..4, 0..4]),
            vec![-7.4, -7.5, -7.6, -7.7],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.async_erase_chunk(&[0, 0]).await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array
        .async_retrieve_chunk_ndarray::<f32>(&chunk_indices)
        .await?;
    println!("async_retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.async_retrieve_chunks_ndarray::<f32>(&chunks).await?;
    println!("async_retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset)
        .await?;
    println!("async_retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::async_new(&*store, "/").await.unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
source

pub fn new_with_shape(shape: ArrayShape) -> Self

Create a new array subset with size starting at the origin.

Examples found in repository?
examples/http_array_read.rs (line 43)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
fn http_array_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::Array,
        array_subset::ArraySubset,
        storage::{
            storage_transformer::{StorageTransformerExtension, UsageLogStorageTransformer},
            store,
        },
    };

    const HTTP_URL: &str =
        "https://raw.githubusercontent.com/LDeakin/zarrs/main/tests/data/array_write_read.zarr";
    const ARRAY_PATH: &str = "/group/array";

    // Create a HTTP store
    let mut store: ReadableStorage = Arc::new(store::HTTPStore::new(HTTP_URL)?);
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log.clone().create_readable_transformer(store);
        }
    }

    // Init the existing array, reading metadata
    let array = Array::new(store, ARRAY_PATH)?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a chunk back from the store
    let chunk_indices = vec![1, 0];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<f32>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    Ok(())
}
More examples
Hide additional examples
examples/rectangular_array_write_read.rs (line 130)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
fn rectangular_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use rayon::prelude::{IntoParallelIterator, ParallelIterator};
    use zarrs::array::ChunkGrid;
    use zarrs::{
        array::{chunk_grid::RectangularChunkGrid, codec, FillValue},
        node::Node,
    };
    use zarrs::{
        array::{DataType, ZARR_NAN_F32},
        array_subset::ArraySubset,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    let mut store: ReadableWritableListableStorage = std::sync::Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        ChunkGrid::new(RectangularChunkGrid::new(&[
            [1, 2, 3, 2].try_into()?,
            4.try_into()?,
        ])),
        FillValue::from(ZARR_NAN_F32),
    )
    .bytes_to_bytes_codecs(vec![
        #[cfg(feature = "gzip")]
        Box::new(codec::GzipCodec::new(5)?),
    ])
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    // Write some chunks (in parallel)
    (0..4).into_par_iter().try_for_each(|i| {
        let chunk_grid = array.chunk_grid();
        let chunk_indices = vec![i, 0];
        if let Some(chunk_shape) = chunk_grid.chunk_shape(&chunk_indices, array.shape())? {
            let chunk_array = ndarray::ArrayD::<f32>::from_elem(
                chunk_shape
                    .iter()
                    .map(|u| u.get() as usize)
                    .collect::<Vec<_>>(),
                i as f32,
            );
            array.store_chunk_ndarray(&chunk_indices, chunk_array)
        } else {
            Err(zarrs::array::ArrayError::InvalidChunkGridIndicesError(
                chunk_indices.to_vec(),
            ))
        }
    })?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write a subset spanning multiple chunks, including updating chunks already written
    array.store_array_subset_ndarray(
        &[3, 3], // start
        ndarray::ArrayD::<f32>::from_shape_vec(
            vec![3, 3],
            vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
        )?,
    )?;

    // Store elements directly, in this case set the 7th column to 123.0
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[0..8, 6..7]),
        vec![123.0; 8],
    )?;

    // Store elements directly in a chunk, in this case set the last row of the bottom right chunk
    array.store_chunk_subset_elements::<f32>(
        // chunk indices
        &[3, 1],
        // subset within chunk
        &ArraySubset::new_with_ranges(&[1..2, 0..4]),
        vec![-4.0; 4],
    )?;

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a chunk back from the store
    let chunk_indices = vec![1, 0];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<f32>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("The zarr hierarchy tree is:\n{tree}");

    Ok(())
}
examples/array_write_read.rs (line 92)
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_elements(
            &chunk_indices,
            vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    array.store_chunks_elements::<f32>(
        &ArraySubset::new_with_ranges(&[1..2, 0..2]),
        vec![
            //
            1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
            //
            1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
        ],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[3..6, 3..6]),
        vec![-3.3, -3.4, -3.5, -4.3, -4.4, -4.5, -5.3, -5.4, -5.5],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[0..8, 6..7]),
        vec![-0.6, -1.6, -2.6, -3.6, -4.6, -5.6, -6.6, -7.6],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    array.store_chunk_subset_elements::<f32>(
        // chunk indices
        &[1, 1],
        // subset within chunk
        &ArraySubset::new_with_ranges(&[3..4, 0..4]),
        vec![-7.4, -7.5, -7.6, -7.7],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
examples/sharded_array_write_read.rs (line 112)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
fn sharded_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use zarrs::{
        array::{
            codec::{self, array_to_bytes::sharding::ShardingCodecBuilder},
            DataType, FillValue,
        },
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    use rayon::prelude::{IntoParallelIterator, ParallelIterator};
    use std::sync::Arc;

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new("tests/data/sharded_array_write_read.zarr")?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    // Create an array
    let array_path = "/group/array";
    let shard_shape = vec![4, 8];
    let inner_chunk_shape = vec![4, 4];
    let mut sharding_codec_builder =
        ShardingCodecBuilder::new(inner_chunk_shape.as_slice().try_into()?);
    sharding_codec_builder.bytes_to_bytes_codecs(vec![
        #[cfg(feature = "gzip")]
        Box::new(codec::GzipCodec::new(5)?),
    ]);
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::UInt16,
        shard_shape.try_into()?,
        FillValue::from(0u16),
    )
    .array_to_bytes_codec(Box::new(sharding_codec_builder.build()))
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    // The array metadata is
    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some shards (in parallel)
    (0..2).into_par_iter().try_for_each(|s| {
        let chunk_grid = array.chunk_grid();
        let chunk_indices = vec![s, 0];
        if let Some(chunk_shape) = chunk_grid.chunk_shape(&chunk_indices, array.shape())? {
            let chunk_array = ndarray::ArrayD::<u16>::from_shape_fn(
                chunk_shape
                    .iter()
                    .map(|u| u.get() as usize)
                    .collect::<Vec<_>>(),
                |ij| {
                    (s * chunk_shape[0].get() * chunk_shape[1].get()
                        + ij[0] as u64 * chunk_shape[1].get()
                        + ij[1] as u64) as u16
                },
            );
            array.store_chunk_ndarray(&chunk_indices, chunk_array)
        } else {
            Err(zarrs::array::ArrayError::InvalidChunkGridIndicesError(
                chunk_indices.to_vec(),
            ))
        }
    })?;

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec()); // the center 4x2 region
    let data_all = array.retrieve_array_subset_ndarray::<u16>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a shard back from the store
    let shard_indices = vec![1, 0];
    let data_shard = array.retrieve_chunk_ndarray::<u16>(&shard_indices)?;
    println!("Shard [1,0] is:\n{data_shard}\n");

    // Read an inner chunk from the store
    let subset_chunk_1_0 = ArraySubset::new_with_ranges(&[4..8, 0..4]);
    let data_chunk = array.retrieve_array_subset_ndarray::<u16>(&subset_chunk_1_0)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<u16>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    // Decode inner chunks
    // In some cases, it might be preferable to decode inner chunks in a shard directly.
    // If using the partial decoder, then the shard index will only be read once from the store.
    let partial_decoder = array.partial_decoder(&[0, 0])?;
    let inner_chunks_to_decode = vec![
        ArraySubset::new_with_start_shape(vec![0, 0], inner_chunk_shape.clone())?,
        ArraySubset::new_with_start_shape(vec![0, 4], inner_chunk_shape.clone())?,
    ];
    let decoded_inner_chunks_bytes = partial_decoder.partial_decode(&inner_chunks_to_decode)?;
    let decoded_inner_chunks_ndarray = decoded_inner_chunks_bytes
        .into_iter()
        .map(|bytes| bytes_to_ndarray::<u16>(&inner_chunk_shape, bytes))
        .collect::<Result<Vec<_>, _>>()?;
    println!("Decoded inner chunks:");
    for (inner_chunk_subset, decoded_inner_chunk) in
        std::iter::zip(inner_chunks_to_decode, decoded_inner_chunks_ndarray)
    {
        println!("{inner_chunk_subset}\n{decoded_inner_chunk}\n");
    }

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("The zarr hierarchy tree is:\n{}", tree);

    println!(
        "The keys in the store are:\n[{}]",
        store.list().unwrap_or_default().iter().format(", ")
    );

    Ok(())
}
examples/array_write_read_ndarray.rs (line 97)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_ndarray(
            &chunk_indices,
            ArrayD::<f32>::from_shape_vec(
                chunk_subset.shape_usize(),
                vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
            .unwrap(),
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    let ndarray_chunks: Array2<f32> = array![
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
    ];
    array.store_chunks_ndarray(&ArraySubset::new_with_ranges(&[1..2, 0..2]), ndarray_chunks)?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    let ndarray_subset: Array2<f32> =
        array![[-3.3, -3.4, -3.5,], [-4.3, -4.4, -4.5,], [-5.3, -5.4, -5.5],];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[3..6, 3..6]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    let ndarray_subset: Array2<f32> = array![
        [-0.6],
        [-1.6],
        [-2.6],
        [-3.6],
        [-4.6],
        [-5.6],
        [-6.6],
        [-7.6],
    ];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[0..8, 6..7]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    let ndarray_chunk_subset: Array2<f32> = array![[-7.4, -7.5, -7.6, -7.7],];
    array.store_chunk_subset_ndarray(
        // chunk indices
        &[1, 1],
        // subset within chunk
        ArraySubset::new_with_ranges(&[3..4, 0..4]).start(),
        ndarray_chunk_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
examples/async_array_write_read.rs (line 105)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
async fn async_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use futures::{stream::FuturesUnordered, StreamExt};
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::AsyncFilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::AsyncFilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: AsyncReadableWritableListableStorage = Arc::new(store::AsyncObjectStore::new(
        object_store::memory::InMemory::new(),
    ));
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_async_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.async_store_metadata().await?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata())?
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.async_store_metadata().await?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata())?
    );

    // Write some chunks
    let subsets = (0..2)
        .map(|i| {
            let chunk_indices: Vec<u64> = vec![0, i];
            array
                .chunk_grid()
                .subset(&chunk_indices, array.shape())?
                .ok_or_else(|| {
                    zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
                })
                .map(|chunk_subset| (i, chunk_indices, chunk_subset))
        })
        .collect::<Result<Vec<_>, _>>()?;
    let mut futures = subsets
        .iter()
        .map(|(i, chunk_indices, chunk_subset)| {
            array.async_store_chunk_elements(
                &chunk_indices,
                vec![*i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
        })
        .collect::<FuturesUnordered<_>>();
    while let Some(item) = futures.next().await {
        item?;
    }

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    array
        .async_store_chunks_elements::<f32>(
            &ArraySubset::new_with_ranges(&[1..2, 0..2]),
            vec![
                //
                1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
                //
                1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
            ],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    array
        .async_store_array_subset_elements::<f32>(
            &ArraySubset::new_with_ranges(&[3..6, 3..6]),
            vec![-3.3, -3.4, -3.5, -4.3, -4.4, -4.5, -5.3, -5.4, -5.5],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    array
        .async_store_array_subset_elements::<f32>(
            &ArraySubset::new_with_ranges(&[0..8, 6..7]),
            vec![-0.6, -1.6, -2.6, -3.6, -4.6, -5.6, -6.6, -7.6],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    array
        .async_store_chunk_subset_elements::<f32>(
            // chunk indices
            &[1, 1],
            // subset within chunk
            &ArraySubset::new_with_ranges(&[3..4, 0..4]),
            vec![-7.4, -7.5, -7.6, -7.7],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.async_erase_chunk(&[0, 0]).await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array
        .async_retrieve_chunk_ndarray::<f32>(&chunk_indices)
        .await?;
    println!("async_retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.async_retrieve_chunks_ndarray::<f32>(&chunks).await?;
    println!("async_retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset)
        .await?;
    println!("async_retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::async_new(&*store, "/").await.unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
source

pub fn new_with_start_shape( start: ArrayIndices, shape: ArrayShape ) -> Result<Self, IncompatibleDimensionalityError>

Create a new array subset.

§Errors

Returns IncompatibleDimensionalityError if the size of start and size do not match.

Examples found in repository?
examples/sharded_array_write_read.rs (line 136)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
fn sharded_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use zarrs::{
        array::{
            codec::{self, array_to_bytes::sharding::ShardingCodecBuilder},
            DataType, FillValue,
        },
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    use rayon::prelude::{IntoParallelIterator, ParallelIterator};
    use std::sync::Arc;

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new("tests/data/sharded_array_write_read.zarr")?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    // Create an array
    let array_path = "/group/array";
    let shard_shape = vec![4, 8];
    let inner_chunk_shape = vec![4, 4];
    let mut sharding_codec_builder =
        ShardingCodecBuilder::new(inner_chunk_shape.as_slice().try_into()?);
    sharding_codec_builder.bytes_to_bytes_codecs(vec![
        #[cfg(feature = "gzip")]
        Box::new(codec::GzipCodec::new(5)?),
    ]);
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::UInt16,
        shard_shape.try_into()?,
        FillValue::from(0u16),
    )
    .array_to_bytes_codec(Box::new(sharding_codec_builder.build()))
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    // The array metadata is
    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some shards (in parallel)
    (0..2).into_par_iter().try_for_each(|s| {
        let chunk_grid = array.chunk_grid();
        let chunk_indices = vec![s, 0];
        if let Some(chunk_shape) = chunk_grid.chunk_shape(&chunk_indices, array.shape())? {
            let chunk_array = ndarray::ArrayD::<u16>::from_shape_fn(
                chunk_shape
                    .iter()
                    .map(|u| u.get() as usize)
                    .collect::<Vec<_>>(),
                |ij| {
                    (s * chunk_shape[0].get() * chunk_shape[1].get()
                        + ij[0] as u64 * chunk_shape[1].get()
                        + ij[1] as u64) as u16
                },
            );
            array.store_chunk_ndarray(&chunk_indices, chunk_array)
        } else {
            Err(zarrs::array::ArrayError::InvalidChunkGridIndicesError(
                chunk_indices.to_vec(),
            ))
        }
    })?;

    // Read the whole array
    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec()); // the center 4x2 region
    let data_all = array.retrieve_array_subset_ndarray::<u16>(&subset_all)?;
    println!("The whole array is:\n{data_all}\n");

    // Read a shard back from the store
    let shard_indices = vec![1, 0];
    let data_shard = array.retrieve_chunk_ndarray::<u16>(&shard_indices)?;
    println!("Shard [1,0] is:\n{data_shard}\n");

    // Read an inner chunk from the store
    let subset_chunk_1_0 = ArraySubset::new_with_ranges(&[4..8, 0..4]);
    let data_chunk = array.retrieve_array_subset_ndarray::<u16>(&subset_chunk_1_0)?;
    println!("Chunk [1,0] is:\n{data_chunk}\n");

    // Read the central 4x2 subset of the array
    let subset_4x2 = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_4x2 = array.retrieve_array_subset_ndarray::<u16>(&subset_4x2)?;
    println!("The middle 4x2 subset is:\n{data_4x2}\n");

    // Decode inner chunks
    // In some cases, it might be preferable to decode inner chunks in a shard directly.
    // If using the partial decoder, then the shard index will only be read once from the store.
    let partial_decoder = array.partial_decoder(&[0, 0])?;
    let inner_chunks_to_decode = vec![
        ArraySubset::new_with_start_shape(vec![0, 0], inner_chunk_shape.clone())?,
        ArraySubset::new_with_start_shape(vec![0, 4], inner_chunk_shape.clone())?,
    ];
    let decoded_inner_chunks_bytes = partial_decoder.partial_decode(&inner_chunks_to_decode)?;
    let decoded_inner_chunks_ndarray = decoded_inner_chunks_bytes
        .into_iter()
        .map(|bytes| bytes_to_ndarray::<u16>(&inner_chunk_shape, bytes))
        .collect::<Result<Vec<_>, _>>()?;
    println!("Decoded inner chunks:");
    for (inner_chunk_subset, decoded_inner_chunk) in
        std::iter::zip(inner_chunks_to_decode, decoded_inner_chunks_ndarray)
    {
        println!("{inner_chunk_subset}\n{decoded_inner_chunk}\n");
    }

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("The zarr hierarchy tree is:\n{}", tree);

    println!(
        "The keys in the store are:\n[{}]",
        store.list().unwrap_or_default().iter().format(", ")
    );

    Ok(())
}
source

pub unsafe fn new_with_start_shape_unchecked( start: ArrayIndices, shape: ArrayShape ) -> Self

Create a new array subset.

§Safety

The length of start and size must match.

source

pub fn new_with_start_end_inc( start: ArrayIndices, end: ArrayIndices ) -> Result<Self, IncompatibleStartEndIndicesError>

Create a new array subset from a start and end (inclusive).

§Errors

Returns IncompatibleStartEndIndicesError if start and end are incompatible, such as if any element of end is less than start or they differ in length.

source

pub unsafe fn new_with_start_end_inc_unchecked( start: ArrayIndices, end: ArrayIndices ) -> Self

Create a new array subset from a start and end (inclusive).

§Safety

The length of start and end must match.

source

pub fn new_with_start_end_exc( start: ArrayIndices, end: ArrayIndices ) -> Result<Self, IncompatibleStartEndIndicesError>

Create a new array subset from a start and end (exclusive).

§Errors

Returns IncompatibleStartEndIndicesError if start and end are incompatible, such as if any element of end is less than start or they differ in length.

source

pub unsafe fn new_with_start_end_exc_unchecked( start: ArrayIndices, end: ArrayIndices ) -> Self

Create a new array subset from a start and end (exclusive).

§Safety

The length of start and end must match.

source

pub fn bound( &self, end: &[u64] ) -> Result<Self, IncompatibleDimensionalityError>

Bound the array subset to the domain within end (exclusive).

§Errors

Returns an error if end does not match the array subset dimensionality.

source

pub unsafe fn bound_unchecked(&self, end: &[u64]) -> Self

Bound the array subset to the domain within end (exclusive).

§Safety

The length of end must match the array subset dimensionality.

source

pub fn start(&self) -> &[u64]

Return the start of the array subset.

Examples found in repository?
examples/array_write_read_ndarray.rs (line 116)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_ndarray(
            &chunk_indices,
            ArrayD::<f32>::from_shape_vec(
                chunk_subset.shape_usize(),
                vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
            .unwrap(),
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    let ndarray_chunks: Array2<f32> = array![
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
    ];
    array.store_chunks_ndarray(&ArraySubset::new_with_ranges(&[1..2, 0..2]), ndarray_chunks)?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    let ndarray_subset: Array2<f32> =
        array![[-3.3, -3.4, -3.5,], [-4.3, -4.4, -4.5,], [-5.3, -5.4, -5.5],];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[3..6, 3..6]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    let ndarray_subset: Array2<f32> = array![
        [-0.6],
        [-1.6],
        [-2.6],
        [-3.6],
        [-4.6],
        [-5.6],
        [-6.6],
        [-7.6],
    ];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[0..8, 6..7]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    let ndarray_chunk_subset: Array2<f32> = array![[-7.4, -7.5, -7.6, -7.7],];
    array.store_chunk_subset_ndarray(
        // chunk indices
        &[1, 1],
        // subset within chunk
        ArraySubset::new_with_ranges(&[3..4, 0..4]).start(),
        ndarray_chunk_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
source

pub fn shape(&self) -> &[u64]

Return the shape of the array subset.

source

pub fn shape_usize(&self) -> Vec<usize>

Return the shape of the array subset.

§Panics

Panics if a dimension exceeds usize::MAX.

Examples found in repository?
examples/array_write_read_ndarray.rs (line 90)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_ndarray(
            &chunk_indices,
            ArrayD::<f32>::from_shape_vec(
                chunk_subset.shape_usize(),
                vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
            .unwrap(),
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    let ndarray_chunks: Array2<f32> = array![
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
    ];
    array.store_chunks_ndarray(&ArraySubset::new_with_ranges(&[1..2, 0..2]), ndarray_chunks)?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    let ndarray_subset: Array2<f32> =
        array![[-3.3, -3.4, -3.5,], [-4.3, -4.4, -4.5,], [-5.3, -5.4, -5.5],];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[3..6, 3..6]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    let ndarray_subset: Array2<f32> = array![
        [-0.6],
        [-1.6],
        [-2.6],
        [-3.6],
        [-4.6],
        [-5.6],
        [-6.6],
        [-7.6],
    ];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[0..8, 6..7]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    let ndarray_chunk_subset: Array2<f32> = array![[-7.4, -7.5, -7.6, -7.7],];
    array.store_chunk_subset_ndarray(
        // chunk indices
        &[1, 1],
        // subset within chunk
        ArraySubset::new_with_ranges(&[3..4, 0..4]).start(),
        ndarray_chunk_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
source

pub fn is_empty(&self) -> bool

Returns if the array subset is empty (i.e. has a zero element in its shape).

source

pub fn dimensionality(&self) -> usize

Return the dimensionality of the array subset.

source

pub fn end_inc(&self) -> Option<ArrayIndices>

Return the end (inclusive) of the array subset.

Returns None if the array subset is empty.

source

pub fn end_exc(&self) -> ArrayIndices

Return the end (exclusive) of the array subset.

source

pub fn num_elements(&self) -> u64

Return the number of elements of the array subset.

Equal to the product of the components of its shape.

Examples found in repository?
examples/array_write_read.rs (line 88)
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_elements(
            &chunk_indices,
            vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    array.store_chunks_elements::<f32>(
        &ArraySubset::new_with_ranges(&[1..2, 0..2]),
        vec![
            //
            1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
            //
            1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
        ],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[3..6, 3..6]),
        vec![-3.3, -3.4, -3.5, -4.3, -4.4, -4.5, -5.3, -5.4, -5.5],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    array.store_array_subset_elements::<f32>(
        &ArraySubset::new_with_ranges(&[0..8, 6..7]),
        vec![-0.6, -1.6, -2.6, -3.6, -4.6, -5.6, -6.6, -7.6],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    array.store_chunk_subset_elements::<f32>(
        // chunk indices
        &[1, 1],
        // subset within chunk
        &ArraySubset::new_with_ranges(&[3..4, 0..4]),
        vec![-7.4, -7.5, -7.6, -7.7],
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
More examples
Hide additional examples
examples/array_write_read_ndarray.rs (line 91)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
fn array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::FilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: ReadableWritableListableStorage = Arc::new(store::MemoryStore::new());
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.store_metadata()?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata()).unwrap()
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.store_metadata()?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata()).unwrap()
    );

    // Write some chunks
    (0..2).into_par_iter().try_for_each(|i| {
        let chunk_indices: Vec<u64> = vec![0, i];
        let chunk_subset = array
            .chunk_grid()
            .subset(&chunk_indices, array.shape())?
            .ok_or_else(|| {
                zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
            })?;
        array.store_chunk_ndarray(
            &chunk_indices,
            ArrayD::<f32>::from_shape_vec(
                chunk_subset.shape_usize(),
                vec![i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
            .unwrap(),
        )
    })?;

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    let ndarray_chunks: Array2<f32> = array![
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
        [1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,],
    ];
    array.store_chunks_ndarray(&ArraySubset::new_with_ranges(&[1..2, 0..2]), ndarray_chunks)?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    let ndarray_subset: Array2<f32> =
        array![[-3.3, -3.4, -3.5,], [-4.3, -4.4, -4.5,], [-5.3, -5.4, -5.5],];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[3..6, 3..6]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    let ndarray_subset: Array2<f32> = array![
        [-0.6],
        [-1.6],
        [-2.6],
        [-3.6],
        [-4.6],
        [-5.6],
        [-6.6],
        [-7.6],
    ];
    array.store_array_subset_ndarray(
        ArraySubset::new_with_ranges(&[0..8, 6..7]).start(),
        ndarray_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    let ndarray_chunk_subset: Array2<f32> = array![[-7.4, -7.5, -7.6, -7.7],];
    array.store_chunk_subset_ndarray(
        // chunk indices
        &[1, 1],
        // subset within chunk
        ArraySubset::new_with_ranges(&[3..4, 0..4]).start(),
        ndarray_chunk_subset,
    )?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.erase_chunk(&[0, 0])?;
    let data_all = array.retrieve_array_subset_ndarray::<f32>(&subset_all)?;
    println!("erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array.retrieve_chunk_ndarray::<f32>(&chunk_indices)?;
    println!("retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.retrieve_chunks_ndarray::<f32>(&chunks)?;
    println!("retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array.retrieve_array_subset_ndarray::<f32>(&subset)?;
    println!("retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::new(&*store, "/").unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
examples/async_array_write_read.rs (line 97)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
async fn async_array_write_read() -> Result<(), Box<dyn std::error::Error>> {
    use futures::{stream::FuturesUnordered, StreamExt};
    use std::sync::Arc;
    use zarrs::{
        array::{DataType, FillValue, ZARR_NAN_F32},
        array_subset::ArraySubset,
        node::Node,
        storage::store,
    };

    // Create a store
    // let path = tempfile::TempDir::new()?;
    // let mut store: ReadableWritableListableStorage = Arc::new(store::AsyncFilesystemStore::new(path.path())?);
    // let mut store: ReadableWritableListableStorage = Arc::new(store::AsyncFilesystemStore::new(
    //     "tests/data/array_write_read.zarr",
    // )?);
    let mut store: AsyncReadableWritableListableStorage = Arc::new(store::AsyncObjectStore::new(
        object_store::memory::InMemory::new(),
    ));
    if let Some(arg1) = std::env::args().collect::<Vec<_>>().get(1) {
        if arg1 == "--usage-log" {
            let log_writer = Arc::new(std::sync::Mutex::new(
                // std::io::BufWriter::new(
                std::io::stdout(),
                //    )
            ));
            let usage_log = Arc::new(UsageLogStorageTransformer::new(log_writer, || {
                chrono::Utc::now().format("[%T%.3f] ").to_string()
            }));
            store = usage_log
                .clone()
                .create_async_readable_writable_listable_transformer(store);
        }
    }

    // Create a group
    let group_path = "/group";
    let mut group = zarrs::group::GroupBuilder::new().build(store.clone(), group_path)?;

    // Update group metadata
    group
        .attributes_mut()
        .insert("foo".into(), serde_json::Value::String("bar".into()));

    // Write group metadata to store
    group.async_store_metadata().await?;

    println!(
        "The group metadata is:\n{}\n",
        serde_json::to_string_pretty(&group.metadata())?
    );

    // Create an array
    let array_path = "/group/array";
    let array = zarrs::array::ArrayBuilder::new(
        vec![8, 8], // array shape
        DataType::Float32,
        vec![4, 4].try_into()?, // regular chunk shape
        FillValue::from(ZARR_NAN_F32),
    )
    // .bytes_to_bytes_codecs(vec![]) // uncompressed
    .dimension_names(["y", "x"].into())
    // .storage_transformers(vec![].into())
    .build(store.clone(), array_path)?;

    // Write array metadata to store
    array.async_store_metadata().await?;

    println!(
        "The array metadata is:\n{}\n",
        serde_json::to_string_pretty(&array.metadata())?
    );

    // Write some chunks
    let subsets = (0..2)
        .map(|i| {
            let chunk_indices: Vec<u64> = vec![0, i];
            array
                .chunk_grid()
                .subset(&chunk_indices, array.shape())?
                .ok_or_else(|| {
                    zarrs::array::ArrayError::InvalidChunkGridIndicesError(chunk_indices.to_vec())
                })
                .map(|chunk_subset| (i, chunk_indices, chunk_subset))
        })
        .collect::<Result<Vec<_>, _>>()?;
    let mut futures = subsets
        .iter()
        .map(|(i, chunk_indices, chunk_subset)| {
            array.async_store_chunk_elements(
                &chunk_indices,
                vec![*i as f32 * 0.1; chunk_subset.num_elements() as usize],
            )
        })
        .collect::<FuturesUnordered<_>>();
    while let Some(item) = futures.next().await {
        item?;
    }

    let subset_all = ArraySubset::new_with_shape(array.shape().to_vec());
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunk [0, 0] and [0, 1]:\n{data_all:+4.1}\n");

    // Store multiple chunks
    array
        .async_store_chunks_elements::<f32>(
            &ArraySubset::new_with_ranges(&[1..2, 0..2]),
            vec![
                //
                1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
                //
                1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.1,
            ],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunks [1..2, 0..2]:\n{data_all:+4.1}\n");

    // Write a subset spanning multiple chunks, including updating chunks already written
    array
        .async_store_array_subset_elements::<f32>(
            &ArraySubset::new_with_ranges(&[3..6, 3..6]),
            vec![-3.3, -3.4, -3.5, -4.3, -4.4, -4.5, -5.3, -5.4, -5.5],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_array_subset [3..6, 3..6]:\n{data_all:+4.1}\n");

    // Store array subset
    array
        .async_store_array_subset_elements::<f32>(
            &ArraySubset::new_with_ranges(&[0..8, 6..7]),
            vec![-0.6, -1.6, -2.6, -3.6, -4.6, -5.6, -6.6, -7.6],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_array_subset [0..8, 6..7]:\n{data_all:+4.1}\n");

    // Store chunk subset
    array
        .async_store_chunk_subset_elements::<f32>(
            // chunk indices
            &[1, 1],
            // subset within chunk
            &ArraySubset::new_with_ranges(&[3..4, 0..4]),
            vec![-7.4, -7.5, -7.6, -7.7],
        )
        .await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_store_chunk_subset [3..4, 0..4] of chunk [1, 1]:\n{data_all:+4.1}\n");

    // Erase a chunk
    array.async_erase_chunk(&[0, 0]).await?;
    let data_all = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset_all)
        .await?;
    println!("async_erase_chunk [0, 0]:\n{data_all:+4.1}\n");

    // Read a chunk
    let chunk_indices = vec![0, 1];
    let data_chunk = array
        .async_retrieve_chunk_ndarray::<f32>(&chunk_indices)
        .await?;
    println!("async_retrieve_chunk [0, 1]:\n{data_chunk:+4.1}\n");

    // Read chunks
    let chunks = ArraySubset::new_with_ranges(&[0..2, 1..2]);
    let data_chunks = array.async_retrieve_chunks_ndarray::<f32>(&chunks).await?;
    println!("async_retrieve_chunks [0..2, 1..2]:\n{data_chunks:+4.1}\n");

    // Retrieve an array subset
    let subset = ArraySubset::new_with_ranges(&[2..6, 3..5]); // the center 4x2 region
    let data_subset = array
        .async_retrieve_array_subset_ndarray::<f32>(&subset)
        .await?;
    println!("async_retrieve_array_subset [2..6, 3..5]:\n{data_subset:+4.1}\n");

    // Show the hierarchy
    let node = Node::async_new(&*store, "/").await.unwrap();
    let tree = node.hierarchy_tree();
    println!("hierarchy_tree:\n{}", tree);

    Ok(())
}
source

pub fn num_elements_usize(&self) -> usize

Return the number of elements of the array subset as a usize.

§Panics

Panics if num_elements() is greater than usize::MAX.

source

pub fn byte_ranges( &self, array_shape: &[u64], element_size: usize ) -> Result<Vec<ByteRange>, IncompatibleArraySubsetAndShapeError>

Return the byte ranges of an array subset in an array with array_shape and element_size.

§Errors

Returns IncompatibleArraySubsetAndShapeError if the array_shape does not encapsulate this array subset.

source

pub unsafe fn byte_ranges_unchecked( &self, array_shape: &[u64], element_size: usize ) -> Vec<ByteRange>

Return the byte ranges of an array subset in an array with array_shape and element_size.

§Safety

The length of array_shape must match the dimensionality of array_subset.

source

pub fn extract_bytes( &self, bytes: &[u8], array_shape: &[u64], element_size: usize ) -> Result<Vec<u8>, ArrayExtractBytesError>

Return the bytes in this array subset from an array with shape array_shape and element_size.

§Errors

Returns ArrayExtractBytesError if the length of array_shape does not match the array subset dimensionality or the array subset is outside of the bounds of array_shape.

§Panics

Panics if attempting to access a byte index beyond usize::MAX.

source

pub unsafe fn extract_bytes_unchecked( &self, bytes: &[u8], array_shape: &[u64], element_size: usize ) -> Vec<u8>

Return the bytes in this array subset from an array with shape array_shape and element_size.

§Safety

The length of array_shape must match the array subset dimensionality and the array subset must be within the bounds of array_shape.

§Panics

Panics if attempting to reference a byte beyond usize::MAX.

source

pub fn extract_elements<T: Copy>( &self, elements: &[T], array_shape: &[u64] ) -> Result<Vec<T>, IncompatibleArraySubsetAndShapeError>

Return the elements in this array subset from an array with shape array_shape.

§Errors

Returns ArrayExtractBytesError if the length of array_shape does not match the array subset dimensionality or the array subset is outside of the bounds of array_shape.

§Panics

Panics if attempting to access a byte index beyond usize::MAX.

source

pub unsafe fn extract_elements_unchecked<T: Copy>( &self, elements: &[T], array_shape: &[u64] ) -> Vec<T>

Return the elements in this array subset from an array with shape array_shape.

§Safety

The length of array_shape must match the array subset dimensionality and the array subset must be within the bounds of array_shape.

§Panics

Panics if attempting to reference a byte beyond usize::MAX.

source

pub fn store_bytes( &self, bytes_subset: &[u8], bytes_array: &mut [u8], array_shape: &[u64], element_size: usize ) -> Result<(), ArrayStoreBytesError>

Store bytes_subset corresponding to the bytes of an array (array_bytes) with shape array_shape and element_size.

§Errors

Returns ArrayStoreBytesError if:

  • the length of array_shape does not match the array subset dimensionality or the array subset is outside of the bounds of array_shape.
  • the length of bytes_array is not compatible with the array_shape and element size, or
  • the length of bytes_subset is not compatible with the shape of this subset and element_size.
§Panics

Panics if attempting to reference a byte beyond usize::MAX.

source

pub unsafe fn store_bytes_unchecked( &self, bytes_subset: &[u8], bytes_array: &mut [u8], array_shape: &[u64], element_size: usize )

Store bytes_subset corresponding to the bytes of an array (array_bytes) with shape array_shape and element_size.

§Safety

The length of array_shape must match the array subset dimensionality and the array subset must be within the bounds of array_shape. The length of bytes_array must match the product of the array_shape components and element_size. The length of bytes_subset must match the product of the array subset shape components and element_size.

§Panics

Panics if attempting to reference a byte beyond usize::MAX.

source

pub fn indices(&self) -> Indices

Returns an iterator over the indices of elements within the subset.

source

pub fn linearised_indices( &self, array_shape: &[u64] ) -> Result<LinearisedIndices, IncompatibleArraySubsetAndShapeError>

Returns an iterator over the linearised indices of elements within the subset.

§Errors

Returns IncompatibleArraySubsetAndShapeError if the array_shape does not encapsulate this array subset.

source

pub unsafe fn linearised_indices_unchecked( &self, array_shape: &[u64] ) -> LinearisedIndices

Returns an iterator over the indices of elements within the subset.

§Safety

array_shape must match the dimensionality and encapsulate this array subset.

source

pub fn contiguous_indices( &self, array_shape: &[u64] ) -> Result<ContiguousIndices, IncompatibleArraySubsetAndShapeError>

Returns an iterator over the indices of contiguous elements within the subset.

§Errors

Returns IncompatibleArraySubsetAndShapeError if the array_shape does not encapsulate this array subset.

source

pub unsafe fn contiguous_indices_unchecked( &self, array_shape: &[u64] ) -> ContiguousIndices

Returns an iterator over the indices of contiguous elements within the subset.

§Safety

The length of array_shape must match the array subset dimensionality.

source

pub fn contiguous_linearised_indices( &self, array_shape: &[u64] ) -> Result<ContiguousLinearisedIndices, IncompatibleArraySubsetAndShapeError>

Returns an iterator over the linearised indices of contiguous elements within the subset.

§Errors

Returns IncompatibleArraySubsetAndShapeError if the array_shape does not encapsulate this array subset.

source

pub unsafe fn contiguous_linearised_indices_unchecked( &self, array_shape: &[u64] ) -> ContiguousLinearisedIndices

Returns an iterator over the linearised indices of contiguous elements within the subset.

§Safety

The length of array_shape must match the array subset dimensionality.

source

pub fn chunks( &self, chunk_shape: &[NonZeroU64] ) -> Result<Chunks, IncompatibleDimensionalityError>

Returns the Chunks with chunk_shape in the array subset which can be iterated over.

All chunks overlapping the array subset are returned, and they all have the same shape chunk_shape. Thus, the subsets of the chunks may extend out over the subset.

§Errors

Returns an error if chunk_shape does not match the array subset dimensionality.

source

pub unsafe fn chunks_unchecked(&self, chunk_shape: &[NonZeroU64]) -> Chunks

Returns the Chunks with chunk_shape in the array subset which can be iterated over.

All chunks overlapping the array subset are returned, and they all have the same shape chunk_shape. Thus, the subsets of the chunks may extend out over the subset.

§Safety

The length of chunk_shape must match the array subset dimensionality.

source

pub fn overlap( &self, subset_other: &Self ) -> Result<Self, IncompatibleDimensionalityError>

Return the overlapping subset between this array subset and subset_other.

§Errors

Returns IncompatibleDimensionalityError if the dimensionality of subset_other does not match the dimensionality of this array subset.

source

pub unsafe fn overlap_unchecked(&self, subset_other: &Self) -> Self

Return the overlapping subset between this array subset and subset_other.

§Safety

Panics if the dimensionality of subset_other does not match the dimensionality of this array subset.

source

pub fn relative_to( &self, start: &[u64] ) -> Result<Self, IncompatibleDimensionalityError>

Return the subset relative to start.

Creates an array subset starting at ArraySubset::start() - start.

§Errors

Returns IncompatibleDimensionalityError if the length of start does not match the dimensionality of this array subset.

source

pub unsafe fn relative_to_unchecked(&self, start: &[u64]) -> Self

Return the subset relative to start.

Creates an array subset starting at ArraySubset::start() - start.

§Safety

Panics if the length of start does not match the dimensionality of this array subset.

source

pub fn inbounds(&self, array_shape: &[u64]) -> bool

Returns true if the array subset is within the bounds of array_shape.

Trait Implementations§

source§

impl Clone for ArraySubset

source§

fn clone(&self) -> ArraySubset

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for ArraySubset

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for ArraySubset

source§

fn default() -> ArraySubset

Returns the “default value” for a type. Read more
source§

impl Display for ArraySubset

source§

fn fmt(&self, _derive_more_display_formatter: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Hash for ArraySubset

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl Ord for ArraySubset

source§

fn cmp(&self, other: &ArraySubset) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
source§

impl PartialEq for ArraySubset

source§

fn eq(&self, other: &ArraySubset) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd for ArraySubset

source§

fn partial_cmp(&self, other: &ArraySubset) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl Eq for ArraySubset

source§

impl StructuralPartialEq for ArraySubset

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
source§

impl<T> DynClone for T
where T: Clone,

source§

fn __clone_box(&self, _: Private) -> *mut ()

source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Pointable for T

source§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more