1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
use crate::*;
use crate::block::{Block, BlockPtr, Item, ItemContent, Prelim, ID};
use crate::block_store::{Snapshot, StateVector};
use crate::event::AfterTransactionEvent;
use crate::id_set::DeleteSet;
use crate::store::{Store, StoreRef};
use crate::types::array::Array;
use crate::types::xml::{XmlElement, XmlText};
use crate::types::{
BranchPtr, Event, Events, Map, Text, TypePtr, TYPE_REFS_ARRAY, TYPE_REFS_MAP, TYPE_REFS_TEXT,
TYPE_REFS_XML_ELEMENT, TYPE_REFS_XML_TEXT,
};
use crate::update::Update;
use lib0::error::Error;
use std::collections::{HashMap, HashSet};
use std::ops::{Deref, DerefMut};
use std::rc::Rc;
use updates::encoder::*;
/// Transaction is one of the core types in Yrs. All operations that need to touch a document's
/// contents (a.k.a. block store), need to be executed in scope of a transaction.
pub struct Transaction {
/// Store containing the state of the document.
pub(crate) store: StoreRef,
/// State vector of a current transaction at the moment of its creation.
pub before_state: StateVector,
/// Current state vector of a transaction, which includes all performed updates.
pub after_state: StateVector,
/// ID's of the blocks to be merged.
pub(crate) merge_blocks: Vec<ID>,
/// Describes the set of deleted items by ids.
pub delete_set: DeleteSet,
/// We store the reference that last moved an item. This is needed to compute the delta
/// when multiple ContentMove move the same item.
pub(crate) prev_moved: HashMap<BlockPtr, BlockPtr>,
/// All types that were directly modified (property added or child inserted/deleted).
/// New types are not included in this Set.
changed: HashMap<TypePtr, HashSet<Option<Rc<str>>>>,
committed: bool,
}
impl Transaction {
pub(crate) fn new(store: StoreRef) -> Transaction {
let begin_timestamp = store.blocks.get_state_vector();
Transaction {
store,
before_state: begin_timestamp,
merge_blocks: Vec::new(),
delete_set: DeleteSet::new(),
after_state: StateVector::default(),
changed: HashMap::new(),
prev_moved: HashMap::default(),
committed: false,
}
}
#[inline]
pub(crate) fn store(&self) -> &Store {
&self.store
}
#[inline]
pub(crate) fn store_mut(&mut self) -> &mut Store {
&mut self.store
}
/// Returns state vector describing current state of the updates.
pub fn state_vector(&self) -> StateVector {
self.store().blocks.get_state_vector()
}
/// Returns a snapshot which describes a current state of updates and removals made within
/// the corresponding document.
pub fn snapshot(&self) -> Snapshot {
let store = self.store();
let blocks = &store.blocks;
let sv = blocks.get_state_vector();
let ds = DeleteSet::from(blocks);
Snapshot::new(sv, ds)
}
/// Encodes all changes from current transaction block store up to a given `snapshot`.
/// This enables to encode state of a document at some specific point in the past.
pub fn encode_state_from_snapshot<E: Encoder>(
&self,
snapshot: &Snapshot,
encoder: &mut E,
) -> Result<(), Error> {
self.store().encode_state_from_snapshot(snapshot, encoder)
}
/// Encodes the difference between remove peer state given its `state_vector` and the state
/// of a current local peer
pub fn encode_diff<E: Encoder>(&self, state_vector: &StateVector, encoder: &mut E) {
self.store().encode_diff(state_vector, encoder)
}
pub fn encode_diff_v1(&self, state_vector: &StateVector) -> Vec<u8> {
let mut encoder = EncoderV1::new();
self.encode_diff(state_vector, &mut encoder);
encoder.to_vec()
}
/// Returns a [Text] data structure stored under a given `name`. Text structures are used for
/// collaborative text editing: they expose operations to append and remove chunks of text,
/// which are free to execute concurrently by multiple peers over remote boundaries.
///
/// If not structure under defined `name` existed before, it will be created and returned
/// instead.
///
/// If a structure under defined `name` already existed, but its type was different it will be
/// reinterpreted as a text (in such case a sequence component of complex data type will be
/// interpreted as a list of text chunks).
pub fn get_text(&mut self, name: &str) -> Text {
let mut c = self
.store_mut()
.get_or_create_type(name, None, TYPE_REFS_TEXT);
c.store = Some(self.store.clone());
Text::from(c)
}
/// Returns a [Map] data structure stored under a given `name`. Maps are used to store key-value
/// pairs associated together. These values can be primitive data (similar but not limited to
/// a JavaScript Object Notation) as well as other shared types (Yrs maps, arrays, text
/// structures etc.), enabling to construct a complex recursive tree structures.
///
/// If not structure under defined `name` existed before, it will be created and returned
/// instead.
///
/// If a structure under defined `name` already existed, but its type was different it will be
/// reinterpreted as a map (in such case a map component of complex data type will be
/// interpreted as native map).
pub fn get_map(&mut self, name: &str) -> Map {
let mut c = self
.store_mut()
.get_or_create_type(name, None, TYPE_REFS_MAP);
c.store = Some(self.store.clone());
Map::from(c)
}
/// Returns an [Array] data structure stored under a given `name`. Array structures are used for
/// storing a sequences of elements in ordered manner, positioning given element accordingly
/// to its index.
///
/// If not structure under defined `name` existed before, it will be created and returned
/// instead.
///
/// If a structure under defined `name` already existed, but its type was different it will be
/// reinterpreted as an array (in such case a sequence component of complex data type will be
/// interpreted as a list of inserted values).
pub fn get_array(&mut self, name: &str) -> Array {
let mut c = self
.store_mut()
.get_or_create_type(name, None, TYPE_REFS_ARRAY);
c.store = Some(self.store.clone());
Array::from(c)
}
/// Returns a [XmlElement] data structure stored under a given `name`. XML elements represent
/// nodes of XML document. They can contain attributes (key-value pairs, both of string type)
/// as well as other nested XML elements or text values, which are stored in their insertion
/// order.
///
/// If not structure under defined `name` existed before, it will be created and returned
/// instead.
///
/// If a structure under defined `name` already existed, but its type was different it will be
/// reinterpreted as a XML element (in such case a map component of complex data type will be
/// interpreted as map of its attributes, while a sequence component - as a list of its child
/// XML nodes).
pub fn get_xml_element(&mut self, name: &str) -> XmlElement {
let mut c = self.store_mut().get_or_create_type(
name,
Some("UNDEFINED".into()),
TYPE_REFS_XML_ELEMENT,
);
c.store = Some(self.store.clone());
XmlElement::from(c)
}
/// Returns a [XmlText] data structure stored under a given `name`. Text structures are used for
/// collaborative text editing: they expose operations to append and remove chunks of text,
/// which are free to execute concurrently by multiple peers over remote boundaries.
///
/// If not structure under defined `name` existed before, it will be created and returned
/// instead.
///
/// If a structure under defined `name` already existed, but its type was different it will be
/// reinterpreted as a text (in such case a sequence component of complex data type will be
/// interpreted as a list of text chunks).
pub fn get_xml_text(&mut self, name: &str) -> XmlText {
let mut c = self
.store_mut()
.get_or_create_type(name, None, TYPE_REFS_XML_TEXT);
c.store = Some(self.store.clone());
XmlText::from(c)
}
/// Encodes changes made within the scope of the current transaction using lib0 v1 encoding.
///
/// Document updates are idempotent and commutative. Caveats:
/// * It doesn't matter in which order document updates are applied.
/// * As long as all clients receive the same document updates, all clients
/// end up with the same content.
/// * Even if an update contains known information, the unknown information
/// is extracted and integrated into the document structure.
pub fn encode_update_v1(&self) -> Vec<u8> {
let mut encoder = updates::encoder::EncoderV1::new();
self.encode_update(&mut encoder);
encoder.to_vec()
}
/// Encodes changes made within the scope of the current transaction using lib0 v2 encoding.
///
/// Document updates are idempotent and commutative. Caveats:
/// * It doesn't matter in which order document updates are applied.
/// * As long as all clients receive the same document updates, all clients
/// end up with the same content.
/// * Even if an update contains known information, the unknown information
/// is extracted and integrated into the document structure.
pub fn encode_update_v2(&self) -> Vec<u8> {
let mut encoder = updates::encoder::EncoderV2::new();
self.encode_update(&mut encoder);
encoder.to_vec()
}
/// Encodes changes made within the scope of the current transaction.
///
/// Document updates are idempotent and commutative. Caveats:
/// * It doesn't matter in which order document updates are applied.
/// * As long as all clients receive the same document updates, all clients
/// end up with the same content.
/// * Even if an update contains known information, the unknown information
/// is extracted and integrated into the document structure.
pub fn encode_update<E: Encoder>(&self, encoder: &mut E) {
let store = self.store();
store.write_blocks_from(&self.before_state, encoder);
self.delete_set.encode(encoder);
}
/// Applies given `id_set` onto current transaction to run multi-range deletion.
/// Returns a remaining of original ID set, that couldn't be applied.
pub(crate) fn apply_delete(&mut self, ds: &DeleteSet) -> Option<DeleteSet> {
let mut unapplied = DeleteSet::new();
for (client, ranges) in ds.iter() {
if let Some(mut blocks) = self.store_mut().blocks.get_mut(client) {
let state = blocks.get_state();
for range in ranges.iter() {
let clock = range.start;
let clock_end = range.end;
if clock < state {
if state < clock_end {
unapplied.insert(ID::new(*client, clock), clock_end - state);
}
// We can ignore the case of GC and Delete structs, because we are going to skip them
if let Some(mut index) = blocks.find_pivot(clock) {
// We can ignore the case of GC and Delete structs, because we are going to skip them
let ptr = blocks.get(index);
if let Block::Item(item) = ptr.clone().deref_mut() {
// split the first item if necessary
if !item.is_deleted() && item.id.clock < clock {
let store = self.store_mut();
if let Some(split) =
store.blocks.split_block_inner(ptr, clock - item.id.clock)
{
if let Block::Item(item) = ptr.deref() {
if item.moved.is_some() {
if let Some(&prev_moved) = self.prev_moved.get(&ptr)
{
self.prev_moved.insert(split, prev_moved);
}
}
}
index += 1;
self.merge_blocks.push(*split.id());
}
blocks = self.store_mut().blocks.get_mut(client).unwrap();
}
while index < blocks.len() {
let block = blocks.get(index);
if let Block::Item(item) = block.clone().deref_mut() {
if item.id.clock < clock_end {
if !item.is_deleted() {
if item.id.clock + item.len() > clock_end {
if let Some(split) =
self.store.blocks.split_block_inner(
block,
clock_end - item.id.clock,
)
{
if let Block::Item(item) = block.deref() {
if item.moved.is_some() {
if let Some(&prev_moved) =
self.prev_moved.get(&block)
{
self.prev_moved
.insert(split, prev_moved);
}
}
}
self.merge_blocks.push(*split.id());
index += 1;
}
}
self.delete(block);
blocks = self
.store_mut()
.blocks
.get_mut(client)
.unwrap();
// just to make the borrow checker happy
}
} else {
break;
}
}
index += 1;
}
}
}
} else {
unapplied.insert(ID::new(*client, clock), clock_end - clock);
}
}
}
}
if unapplied.is_empty() {
None
} else {
Some(unapplied)
}
}
/// Delete item under given pointer.
/// Returns true if block was successfully deleted, false if it was already deleted in the past.
pub(crate) fn delete(&mut self, block: BlockPtr) -> bool {
let mut ptr = block;
let mut recurse = Vec::new();
let mut result = false;
let store = self.store.deref();
if let Block::Item(item) = ptr.deref_mut() {
if !item.is_deleted() {
if item.parent_sub.is_none() && item.is_countable() {
if let TypePtr::Branch(mut parent) = item.parent {
parent.block_len -= item.len();
parent.content_len -= item.content_len(store.options.offset_kind);
}
}
item.mark_as_deleted();
self.delete_set.insert(item.id.clone(), item.len());
let parent = *item.parent.as_branch().unwrap();
self.add_changed_type(parent, item.parent_sub.clone());
match &item.content {
ItemContent::Doc(_, _) => {
//if (transaction.subdocsAdded.has(this.doc)) {
// transaction.subdocsAdded.delete(this.doc)
//} else {
// transaction.subdocsRemoved.add(this.doc)
//}
todo!()
}
ItemContent::Type(inner) => {
let mut ptr = inner.start;
self.changed
.remove(&TypePtr::Branch(BranchPtr::from(inner)));
while let Some(Block::Item(item)) = ptr.as_deref() {
if !item.is_deleted() {
recurse.push(ptr.unwrap());
}
ptr = item.right.clone();
}
for ptr in inner.map.values() {
recurse.push(ptr.clone());
}
}
ItemContent::Move(m) => m.delete(self, block),
_ => { /* nothing to do for other content types */ }
}
result = true;
}
}
for &ptr in recurse.iter() {
let id = *ptr.id();
if !self.delete(ptr) {
// Whis will be gc'd later and we want to merge it if possible
// We try to merge all deleted items after each transaction,
// but we have no knowledge about that this needs to be merged
// since it is not in transaction.ds. Hence we add it to transaction._mergeStructs
self.merge_blocks.push(id);
}
}
result
}
/// Applies a deserialized update contents into a document owning current transaction.
pub fn apply_update(&mut self, update: Update) {
let (remaining, remaining_ds) = update.integrate(self);
let mut retry = false;
{
let store = self.store_mut();
if let Some(mut pending) = store.pending.take() {
// check if we can apply something
for (client, &clock) in pending.missing.iter() {
if clock < store.blocks.get_state(client) {
retry = true;
break;
}
}
if let Some(remaining) = remaining {
// merge restStructs into store.pending
for (&client, &clock) in remaining.missing.iter() {
pending.missing.set_min(client, clock);
}
pending.update = Update::merge_updates(vec![pending.update, remaining.update]);
store.pending = Some(pending);
}
} else {
store.pending = remaining;
}
}
if let Some(pending) = self.store_mut().pending_ds.take() {
let ds2 = self.apply_delete(&pending);
let ds = match (remaining_ds, ds2) {
(Some(mut a), Some(b)) => {
a.delete_set.merge(b);
Some(a.delete_set)
}
(Some(x), _) => Some(x.delete_set),
(_, Some(x)) => Some(x),
_ => None,
};
self.store_mut().pending_ds = ds;
} else {
self.store_mut().pending_ds = remaining_ds.map(|update| update.delete_set);
}
if retry {
let store = self.store_mut();
if let Some(pending) = store.pending.take() {
let ds = store.pending_ds.take().unwrap_or_default();
let mut ds_update = Update::new();
ds_update.delete_set = ds;
self.apply_update(pending.update);
self.apply_update(ds_update)
}
}
}
pub(crate) fn create_item<T: Prelim>(
&mut self,
pos: &block::ItemPosition,
value: T,
parent_sub: Option<Rc<str>>,
) -> BlockPtr {
let (left, right, origin, id) = {
let store = self.store_mut();
let left = pos.left;
let right = pos.right;
let origin = if let Some(Block::Item(item)) = pos.left.as_deref() {
Some(item.last_id())
} else {
None
};
let client_id = store.options.client_id;
let id = ID::new(client_id, store.get_local_state());
(left, right, origin, id)
};
let (content, remainder) = value.into_content(self);
let inner_ref = if let ItemContent::Type(inner_ref) = &content {
Some(BranchPtr::from(inner_ref))
} else {
None
};
let mut block = Item::new(
id,
left,
origin,
right,
right.map(|r| r.id().clone()),
pos.parent.clone(),
parent_sub,
content,
);
let mut block_ptr = BlockPtr::from(&mut block);
block_ptr.integrate(self, 0);
let local_block_list = self.store_mut().blocks.get_client_blocks_mut(id.client);
local_block_list.push(block);
if let Some(remainder) = remainder {
remainder.integrate(self, inner_ref.unwrap().into())
}
block_ptr
}
/// Commits current transaction. This step involves cleaning up and optimizing changes performed
/// during lifetime of a transaction. Such changes include squashing delete sets data
/// or squashing blocks that have been appended one after another to preserve memory.
///
/// This step is performed automatically when a transaction is about to be dropped (its life
/// scope comes to an end).
pub fn commit(&mut self) {
if self.committed {
return;
}
self.committed = true;
// 1. sort and merge delete set
self.delete_set.squash();
self.after_state = self.store.blocks.get_state_vector();
// 2. emit 'beforeObserverCalls'
// 3. for each change observed by the transaction call 'afterTransaction'
if !self.changed.is_empty() {
let mut changed_parents: HashMap<BranchPtr, Vec<usize>> = HashMap::new();
let mut event_cache = Vec::new();
for (ptr, subs) in self.changed.iter() {
if let TypePtr::Branch(branch) = ptr {
if let Some(e) = branch.trigger(self, subs.clone()) {
event_cache.push(e);
let mut current = *branch;
loop {
if current.deep_observers.is_some() {
let entries = changed_parents.entry(current).or_default();
entries.push(event_cache.len() - 1);
}
if let Some(Block::Item(item)) = current.item.as_deref() {
if let TypePtr::Branch(parent) = item.parent {
current = parent;
continue;
}
}
break;
}
}
}
}
// deep observe events
for (&branch, events) in changed_parents.iter() {
// sort events by path length so that top-level events are fired first.
let mut unsorted: Vec<&Event> = Vec::with_capacity(events.len());
for &i in events.iter() {
let e = &mut event_cache[i];
e.set_current_target(branch);
}
for &i in events.iter() {
unsorted.push(&event_cache[i]);
}
// We don't need to check for events.length
// because we know it has at least one element
let events = Events::new(&mut unsorted);
branch.trigger_deep(self, &events);
}
}
// 4. try GC delete set
if !self.store.options.skip_gc {
self.try_gc();
}
// 5. try merge delete set
self.delete_set.try_squash_with(&mut self.store);
// 6. get transaction after state and try to merge to left
for (client, &clock) in self.after_state.iter() {
let before_clock = self.before_state.get(client);
if before_clock != clock {
let blocks = self.store.blocks.get_mut(client).unwrap();
let first_change = blocks.find_pivot(before_clock).unwrap().max(1);
let mut i = blocks.len() - 1;
while i >= first_change {
blocks.squash_left(i);
i -= 1;
}
}
}
// 7. get merge_structs and try to merge to left
for id in self.merge_blocks.iter() {
if let Some(blocks) = self.store.blocks.get_mut(&id.client) {
if let Some(replaced_pos) = blocks.find_pivot(id.clock) {
if replaced_pos + 1 < blocks.len() {
blocks.squash_left(replaced_pos + 1);
} else if replaced_pos > 0 {
blocks.squash_left(replaced_pos);
}
}
}
}
// 8. emit 'afterTransactionCleanup'
let store = self.store();
if let Some(eh) = store.after_transaction_events.as_ref() {
let event = AfterTransactionEvent {
before_state: self.before_state.clone(),
after_state: self.after_state.clone(),
delete_set: self.delete_set.clone(),
};
eh.publish(&self, &event);
}
// 9. emit 'update'
if let Some(eh) = store.update_v1_events.as_ref() {
if !self.delete_set.is_empty() || self.after_state != self.before_state {
// produce update only if anything changed
let update = UpdateEvent::new(self.encode_update_v1());
eh.publish(&self, &update);
}
}
// 10. emit 'updateV2'
if let Some(eh) = store.update_v2_events.as_ref() {
if !self.delete_set.is_empty() || self.after_state != self.before_state {
// produce update only if anything changed
let update = UpdateEvent::new(self.encode_update_v2());
eh.publish(&self, &update);
}
}
// 11. add and remove subdocs
// 12. emit 'subdocs'
}
fn try_gc(&self) {
let store = self.store();
for (client, range) in self.delete_set.iter() {
if let Some(blocks) = store.blocks.get(client) {
for delete_item in range.iter().rev() {
let mut start = delete_item.start;
if let Some(mut i) = blocks.find_pivot(start) {
while i < blocks.len() {
let mut block = blocks.get(i);
let len = block.len();
start += len;
if start > delete_item.end {
break;
} else {
block.gc(false);
i += 1;
}
}
}
}
}
}
}
pub(crate) fn add_changed_type(&mut self, parent: BranchPtr, parent_sub: Option<Rc<str>>) {
let trigger = if let Some(ptr) = parent.item {
(ptr.id().clock < self.before_state.get(&ptr.id().client)) && !ptr.is_deleted()
} else {
true
};
if trigger {
let e = self.changed.entry(parent.into()).or_default();
e.insert(parent_sub.clone());
}
}
/// Checks if item with a given `id` has been added to a block store within this transaction.
pub(crate) fn has_added(&self, id: &ID) -> bool {
id.clock >= self.before_state.get(&id.client)
}
/// Checks if item with a given `id` has been deleted within this transaction.
pub(crate) fn has_deleted(&self, id: &ID) -> bool {
self.delete_set.is_deleted(id)
}
pub(crate) fn split_by_snapshot(&mut self, snapshot: &Snapshot) {
let mut merge_blocks: Vec<ID> = Vec::new();
let blocks = &mut self.store.blocks;
for (client, &clock) in snapshot.state_map.iter() {
if let Some(list) = blocks.get(client) {
if let Some(ptr) = list.get_block(clock) {
let ptr_clock = ptr.id().clock;
if ptr_clock < clock {
if let Some(right) = blocks.split_block_inner(ptr, clock - ptr_clock) {
if let Block::Item(item) = ptr.deref() {
if item.moved.is_some() {
if let Some(&prev_moved) = self.prev_moved.get(&ptr) {
self.prev_moved.insert(right, prev_moved);
}
}
}
merge_blocks.push(*right.id());
}
}
}
}
}
for (client, range) in snapshot.delete_set.iter() {
if let Some(mut list) = blocks.get(client) {
for r in range.iter() {
if let Some(pivot) = list.find_pivot(r.start) {
let block = list.get(pivot);
let clock = block.id().clock;
if clock < r.start {
if let Some(ptr) = blocks.split_block_inner(block, r.start - clock) {
if let Block::Item(item) = block.deref() {
if item.moved.is_some() {
if let Some(&prev_moved) = self.prev_moved.get(&block) {
self.prev_moved.insert(ptr, prev_moved);
}
}
}
merge_blocks.push(*ptr.id());
}
list = blocks.get(client).unwrap();
}
}
if let Some(pivot) = list.find_pivot(r.end) {
let block = list.get(pivot);
let block_id = block.id();
let block_len = block.len();
if block_id.clock + block_len > r.end {
if let Some(ptr) =
blocks.split_block_inner(block, block_id.clock + block_len - r.end)
{
if let Block::Item(item) = block.deref() {
if item.moved.is_some() {
if let Some(&prev_moved) = self.prev_moved.get(&block) {
self.prev_moved.insert(ptr, prev_moved);
}
}
}
merge_blocks.push(*ptr.id());
}
list = blocks.get(client).unwrap();
}
}
}
}
}
self.merge_blocks.append(&mut merge_blocks);
}
}
impl Drop for Transaction {
fn drop(&mut self) {
self.commit()
}
}