1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
// This file is part of yash, an extended POSIX shell.
// Copyright (C) 2021 WATANABE Yuki
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <https://www.gnu.org/licenses/>.
//! [System] and its implementors.
mod errno;
pub mod fd_set;
pub mod real;
pub mod resource;
pub mod r#virtual;
pub use self::errno::Errno;
pub use self::errno::RawErrno;
pub use self::errno::Result;
use self::fd_set::FdSet;
#[cfg(doc)]
use self::r#virtual::VirtualSystem;
#[cfg(doc)]
use self::real::RealSystem;
use self::resource::LimitPair;
use self::resource::Resource;
use crate::io::Fd;
use crate::io::MIN_INTERNAL_FD;
use crate::job::Pid;
use crate::job::ProcessState;
#[cfg(doc)]
use crate::subshell::Subshell;
use crate::trap::Signal;
use crate::trap::SignalSystem;
use crate::Env;
use futures_util::future::poll_fn;
use futures_util::task::Poll;
#[doc(no_inline)]
pub use nix::fcntl::AtFlags;
#[doc(no_inline)]
pub use nix::fcntl::FdFlag;
#[doc(no_inline)]
pub use nix::fcntl::OFlag;
#[doc(no_inline)]
pub use nix::sys::signal::SigSet;
#[doc(no_inline)]
pub use nix::sys::signal::SigmaskHow;
#[doc(no_inline)]
pub use nix::sys::stat::{FileStat, Mode, SFlag};
#[doc(no_inline)]
pub use nix::sys::time::TimeSpec;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::cmp::Reverse;
use std::collections::binary_heap::PeekMut;
use std::collections::BinaryHeap;
use std::convert::Infallible;
use std::ffi::c_int;
use std::ffi::CStr;
use std::ffi::CString;
use std::ffi::OsStr;
use std::ffi::OsString;
use std::fmt::Debug;
use std::future::Future;
use std::io::SeekFrom;
use std::ops::Deref;
use std::ops::DerefMut;
use std::path::Path;
use std::path::PathBuf;
use std::pin::Pin;
use std::rc::Rc;
use std::rc::Weak;
use std::task::Waker;
use std::time::Duration;
use std::time::Instant;
/// API to the system-managed parts of the environment.
///
/// The `System` trait defines a collection of methods to access the underlying
/// operating system from the shell as an application program. There are two
/// substantial implementors for this trait: [`RealSystem`] and
/// [`VirtualSystem`]. Another implementor is [`SharedSystem`], which wraps a
/// `System` instance to extend the interface with asynchronous methods.
pub trait System: Debug {
    /// Retrieves metadata of a file.
    fn fstat(&self, fd: Fd) -> Result<FileStat>;
    /// Retrieves metadata of a file.
    fn fstatat(&self, dir_fd: Fd, path: &CStr, flags: AtFlags) -> Result<FileStat>;
    /// Whether there is an executable file at the specified path.
    #[must_use]
    fn is_executable_file(&self, path: &CStr) -> bool;
    /// Whether there is a directory at the specified path.
    #[must_use]
    fn is_directory(&self, path: &CStr) -> bool;
    /// Creates an unnamed pipe.
    ///
    /// This is a thin wrapper around the `pipe` system call.
    /// If successful, returns the reading and writing ends of the pipe.
    fn pipe(&mut self) -> Result<(Fd, Fd)>;
    /// Duplicates a file descriptor.
    ///
    /// This is a thin wrapper around the `fcntl` system call that opens a new
    /// FD that shares the open file description with `from`. The new FD will be
    /// the minimum unused FD not less than `to_min`. The `flags` are set to the
    /// new FD.
    ///
    /// If successful, returns `Ok(new_fd)`. On error, returns `Err(_)`.
    fn dup(&mut self, from: Fd, to_min: Fd, flags: FdFlag) -> Result<Fd>;
    /// Duplicates a file descriptor.
    ///
    /// This is a thin wrapper around the `dup2` system call. If successful,
    /// returns `Ok(to)`. On error, returns `Err(_)`.
    fn dup2(&mut self, from: Fd, to: Fd) -> Result<Fd>;
    /// Opens a file descriptor.
    ///
    /// This is a thin wrapper around the `open` system call.
    fn open(&mut self, path: &CStr, option: OFlag, mode: Mode) -> Result<Fd>;
    /// Opens a file descriptor associated with an anonymous temporary file.
    ///
    /// This function works similarly to the `O_TMPFILE` flag specified to the
    /// `open` function.
    fn open_tmpfile(&mut self, parent_dir: &Path) -> Result<Fd>;
    /// Closes a file descriptor.
    ///
    /// This is a thin wrapper around the `close` system call.
    ///
    /// This function returns `Ok(())` when the FD is already closed.
    fn close(&mut self, fd: Fd) -> Result<()>;
    /// Returns the file status flags for the open file description.
    ///
    /// This is a thin wrapper around the `fcntl` system call.
    fn fcntl_getfl(&self, fd: Fd) -> Result<OFlag>;
    /// Sets the file status flags for the open file description.
    ///
    /// This is a thin wrapper around the `fcntl` system call.
    fn fcntl_setfl(&mut self, fd: Fd, flags: OFlag) -> Result<()>;
    /// Returns the attributes for the file descriptor.
    ///
    /// This is a thin wrapper around the `fcntl` system call.
    fn fcntl_getfd(&self, fd: Fd) -> Result<FdFlag>;
    /// Sets attributes for the file descriptor.
    ///
    /// This is a thin wrapper around the `fcntl` system call.
    fn fcntl_setfd(&mut self, fd: Fd, flags: FdFlag) -> Result<()>;
    /// Tests if a file descriptor is associated with a terminal device.
    fn isatty(&self, fd: Fd) -> Result<bool>;
    /// Reads from the file descriptor.
    ///
    /// This is a thin wrapper around the `read` system call.
    /// If successful, returns the number of bytes read.
    ///
    /// This function may perform blocking I/O, especially if the `O_NONBLOCK`
    /// flag is not set for the FD. Use [`SharedSystem::read_async`] to support
    /// concurrent I/O in an `async` function context.
    fn read(&mut self, fd: Fd, buffer: &mut [u8]) -> Result<usize>;
    /// Writes to the file descriptor.
    ///
    /// This is a thin wrapper around the `write` system call.
    /// If successful, returns the number of bytes written.
    ///
    /// This function may write only part of the `buffer` and block if the
    /// `O_NONBLOCK` flag is not set for the FD. Use [`SharedSystem::write_all`]
    /// to support concurrent I/O in an `async` function context and ensure the
    /// whole `buffer` is written.
    fn write(&mut self, fd: Fd, buffer: &[u8]) -> Result<usize>;
    /// Moves the position of the open file description.
    fn lseek(&mut self, fd: Fd, position: SeekFrom) -> Result<u64>;
    /// Opens a directory for enumerating entries.
    fn fdopendir(&mut self, fd: Fd) -> Result<Box<dyn Dir>>;
    /// Opens a directory for enumerating entries.
    fn opendir(&mut self, path: &CStr) -> Result<Box<dyn Dir>>;
    /// Gets and sets the file creation mode mask.
    ///
    /// This is a thin wrapper around the `umask` system call. It sets the mask
    /// to the given value and returns the previous mask.
    ///
    /// You cannot tell the current mask without setting a new one. If you only
    /// want to get the current mask, you need to set it back to the original
    /// value after getting it.
    fn umask(&mut self, mask: Mode) -> Mode;
    /// Returns the current time.
    #[must_use]
    fn now(&self) -> Instant;
    /// Returns consumed CPU times.
    fn times(&self) -> Result<Times>;
    /// Gets and/or sets the signal blocking mask.
    ///
    /// This is a low-level function used internally by
    /// [`SharedSystem::set_signal_handling`]. You should not call this function
    /// directly, or you will disrupt the behavior of `SharedSystem`. The
    /// description below applies if you want to do everything yourself without
    /// depending on `SharedSystem`.
    ///
    /// This is a thin wrapper around the `sigprocmask` system call. If `set` is
    /// `Some`, this function updates the signal blocking mask according to
    /// `how`. If `oldset` is `Some`, this function sets the previous mask to
    /// it.
    fn sigmask(
        &mut self,
        how: SigmaskHow,
        set: Option<&SigSet>,
        oldset: Option<&mut SigSet>,
    ) -> Result<()>;
    /// Gets and sets the handler for a signal.
    ///
    /// This is a low-level function used internally by
    /// [`SharedSystem::set_signal_handling`]. You should not call this function
    /// directly, or you will disrupt the behavior of `SharedSystem`. The
    /// description below applies if you want to do everything yourself without
    /// depending on `SharedSystem`.
    ///
    /// This is an abstract wrapper around the `sigaction` system call. This
    /// function returns the previous handler if successful.
    ///
    /// When you set the handler to `SignalHandling::Catch`, signals sent to
    /// this process are accumulated in the `System` instance and made available
    /// from [`caught_signals`](Self::caught_signals).
    fn sigaction(&mut self, signal: Signal, action: SignalHandling) -> Result<SignalHandling>;
    /// Returns signals this process has caught, if any.
    ///
    /// This is a low-level function used internally by
    /// [`SharedSystem::select`]. You should not call this function directly, or
    /// you will disrupt the behavior of `SharedSystem`. The description below
    /// applies if you want to do everything yourself without depending on
    /// `SharedSystem`.
    ///
    /// To catch a signal, you must set the signal handler to
    /// [`SignalHandling::Catch`] by calling [`sigaction`](Self::sigaction)
    /// first. Once the handler is ready, signals sent to the process are
    /// accumulated in the `System`. You call `caught_signals` to obtain a list
    /// of caught signals thus far.
    ///
    /// This function clears the internal list of caught signals, so a next call
    /// will return an empty list unless another signal is caught since the
    /// first call. Because the list size is limited, you should call this
    /// function periodically before the list gets full, in which case further
    /// caught signals are silently ignored.
    ///
    /// Note that signals become pending if sent while blocked by
    /// [`sigmask`](Self::sigmask). They must be unblocked so that they are
    /// caught and made available from this function.
    fn caught_signals(&mut self) -> Vec<Signal>;
    /// Sends a signal.
    ///
    /// This is a thin wrapper around the `kill` system call.
    ///
    /// The virtual system version of this function blocks the calling thread if
    /// the signal stops or terminates the current process, hence returning a
    /// future. See [`VirtualSystem::kill`] for details.
    fn kill(
        &mut self,
        target: Pid,
        signal: Option<Signal>,
    ) -> Pin<Box<dyn Future<Output = Result<()>>>>;
    /// Waits for a next event.
    ///
    /// This is a low-level function used internally by
    /// [`SharedSystem::select`]. You should not call this function directly, or
    /// you will disrupt the behavior of `SharedSystem`. The description below
    /// applies if you want to do everything yourself without depending on
    /// `SharedSystem`.
    ///
    /// This function blocks the calling thread until one of the following
    /// condition is met:
    ///
    /// - An FD in `readers` becomes ready for reading.
    /// - An FD in `writers` becomes ready for writing.
    /// - The specified `timeout` duration has passed.
    /// - A signal handler catches a signal.
    ///
    /// When this function returns an `Ok`, FDs that are not ready for reading
    /// and writing are removed from `readers` and `writers`, respectively. The
    /// return value will be the number of FDs left in `readers` and `writers`.
    ///
    /// If `readers` and `writers` contain an FD that is not open for reading
    /// and writing, respectively, this function will fail with `EBADF`. In this
    /// case, you should remove the FD from `readers` and `writers` and try
    /// again.
    ///
    /// If `signal_mask` is `Some` signal set, the signal blocking mask is set
    /// to it while waiting and restored when the function returns.
    fn select(
        &mut self,
        readers: &mut FdSet,
        writers: &mut FdSet,
        timeout: Option<&TimeSpec>,
        signal_mask: Option<&SigSet>,
    ) -> Result<c_int>;
    /// Returns the process ID of the current process.
    #[must_use]
    fn getpid(&self) -> Pid;
    /// Returns the process ID of the parent process.
    #[must_use]
    fn getppid(&self) -> Pid;
    /// Returns the process group ID of the current process.
    #[must_use]
    fn getpgrp(&self) -> Pid;
    /// Modifies the process group ID of a process.
    ///
    /// This is a thin wrapper around the `setpgid` system call.
    fn setpgid(&mut self, pid: Pid, pgid: Pid) -> Result<()>;
    /// Returns the current foreground process group ID.
    ///
    /// This is a thin wrapper around the `tcgetpgrp` system call.
    fn tcgetpgrp(&self, fd: Fd) -> Result<Pid>;
    /// Switches the foreground process group.
    ///
    /// This is a thin wrapper around the `tcsetpgrp` system call.
    fn tcsetpgrp(&mut self, fd: Fd, pgid: Pid) -> Result<()>;
    /// Creates a new child process.
    ///
    /// This is a thin wrapper around the `fork` system call. Users of `Env`
    /// should not call it directly. Instead, use [`Subshell`] so that the
    /// environment can condition the state of the child process before it
    /// starts running.
    ///
    /// If successful, this function returns a [`ChildProcessStarter`] function. The
    /// caller must call the starter exactly once to make sure the parent and
    /// child processes perform correctly after forking.
    fn new_child_process(&mut self) -> Result<ChildProcessStarter>;
    /// Reports updated status of a child process.
    ///
    /// This is a low-level function used internally by
    /// [`Env::wait_for_subshell`]. You should not call this function directly,
    /// or you will disrupt the behavior of `Env`. The description below applies
    /// if you want to do everything yourself without depending on `Env`.
    ///
    /// This function performs
    /// `waitpid(target, ..., WUNTRACED | WCONTINUED | WNOHANG)`.
    /// Despite the name, this function does not block: it returns the result
    /// immediately.
    ///
    /// This function returns a pair of the process ID and the process state if
    /// a process matching `target` is found and its state has changed. If all
    /// the processes matching `target` have not changed their states, this
    /// function returns `Ok(None)`. If an error occurs, this function returns
    /// `Err(_)`.
    fn wait(&mut self, target: Pid) -> Result<Option<(Pid, ProcessState)>>;
    // TODO Consider passing raw pointers for optimization
    /// Replaces the current process with an external utility.
    ///
    /// This is a thin wrapper around the `execve` system call.
    fn execve(&mut self, path: &CStr, args: &[CString], envs: &[CString]) -> Result<Infallible>;
    /// Returns the current working directory path.
    fn getcwd(&self) -> Result<PathBuf>;
    /// Changes the working directory.
    fn chdir(&mut self, path: &CStr) -> Result<()>;
    /// Returns the home directory path of the given user.
    ///
    /// Returns `Ok(None)` if the user is not found.
    fn getpwnam_dir(&self, name: &str) -> Result<Option<PathBuf>>;
    /// Returns the standard `$PATH` value where all standard utilities are
    /// expected to be found.
    ///
    /// This is a thin wrapper around the `confstr(_CS_PATH, …)`.
    fn confstr_path(&self) -> Result<OsString>;
    /// Returns the limits for the specified resource.
    ///
    /// This function returns a pair of the soft and hard limits for the given
    /// resource. The soft limit is the current limit, and the hard limit is the
    /// maximum value that the soft limit can be set to.
    ///
    /// When no limit is set, the limit value is [`RLIM_INFINITY`].
    ///
    /// This is a thin wrapper around the `getrlimit` system call.
    ///
    /// [`RLIM_INFINITY`]: self::resource::RLIM_INFINITY
    fn getrlimit(&self, resource: Resource) -> std::io::Result<LimitPair>;
    /// Sets the limits for the specified resource.
    ///
    /// Specify [`RLIM_INFINITY`] as the limit value to remove the limit.
    ///
    /// This is a thin wrapper around the `setrlimit` system call.
    ///
    /// [`RLIM_INFINITY`]: self::resource::RLIM_INFINITY
    fn setrlimit(&mut self, resource: Resource, limits: LimitPair) -> std::io::Result<()>;
}
/// Sentinel for the current working directory
///
/// This value can be passed to system calls named "*at" such as
/// [`System::fstatat`].
pub const AT_FDCWD: Fd = Fd(nix::libc::AT_FDCWD);
/// Set of consumed CPU time
///
/// This structure contains four CPU time values, all in seconds.
///
/// This structure is returned by [`System::times`].
#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct Times {
    /// User CPU time consumed by the current process
    pub self_user: f64,
    /// System CPU time consumed by the current process
    pub self_system: f64,
    /// User CPU time consumed by the children of the current process
    pub children_user: f64,
    /// System CPU time consumed by the children of the current process
    pub children_system: f64,
}
/// How to handle a signal.
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum SignalHandling {
    /// Perform the default action for the signal.
    #[default]
    Default,
    /// Ignore the signal.
    Ignore,
    /// Catch the signal.
    Catch,
}
/// Task executed in a child process
///
/// This is an argument passed to a [`ChildProcessStarter`]. The task is
/// executed in a child process initiated by the starter. The environment passed
/// to the task is a clone of the parent environment, but it has a different
/// process ID than the parent.
pub type ChildProcessTask =
    Box<dyn for<'a> FnOnce(&'a mut Env) -> Pin<Box<dyn Future<Output = ()> + 'a>>>;
/// Abstract function that starts a child process
///
/// [`System::new_child_process`] returns a child process starter. You need to
/// pass the parent environment and a task to run in the child.
///
/// [`RealSystem`]'s `new_child_process` performs a `fork` system call and
/// returns a starter in the parent and child processes. When the starter is
/// called in the parent, it just returns the child process ID. The starter in
/// the child process runs the task and exits the process with the exit status
/// of the task.
///
/// For [`VirtualSystem`], no real child process is created. Instead, the
/// starter runs the task concurrently in the current process using the executor
/// contained in the system. A new [`Process`](virtual::Process) is added to the
/// system to represent the child process. The starter returns its process ID.
/// See also [`VirtualSystem::new_child_process`].
///
/// This function only starts the child, which continues to run asynchronously
/// after the function returns its PID. To wait for the child to finish and
/// obtain its exit status, use [`System::wait`].
pub type ChildProcessStarter = Box<
    dyn for<'a> FnOnce(&'a mut Env, ChildProcessTask) -> Pin<Box<dyn Future<Output = Pid> + 'a>>,
>;
/// Metadata of a file contained in a directory
///
/// `DirEntry` objects are enumerated by a [`Dir`] implementor.
#[derive(Clone, Copy, Debug)]
#[non_exhaustive]
pub struct DirEntry<'a> {
    /// Filename
    pub name: &'a OsStr,
}
/// Trait for enumerating directory entries
///
/// An implementor of `Dir` may retain a file descriptor (or any other resource
/// alike) to access the underlying system and obtain entry information. The
/// file descriptor is released when the implementor object is dropped.
pub trait Dir: Debug {
    /// Returns the next directory entry.
    fn next(&mut self) -> Result<Option<DirEntry>>;
}
/// Extension for [`System`]
///
/// This trait provides some extension methods for `System`.
pub trait SystemEx: System {
    /// Moves a file descriptor to [`MIN_INTERNAL_FD`] or larger.
    ///
    /// This function can be used to make sure a file descriptor used by the
    /// shell does not conflict with file descriptors used by the user.
    /// [`MIN_INTERNAL_FD`] is the minimum file descriptor number the shell
    /// uses internally. This function moves the file descriptor to a number
    /// larger than or equal to [`MIN_INTERNAL_FD`].
    ///
    /// If the given file descriptor is less than [`MIN_INTERNAL_FD`], this
    /// function duplicates the file descriptor with [`System::dup`] and closes
    /// the original one. Otherwise, this function does nothing.
    ///
    /// The new file descriptor will have the CLOEXEC flag set when it is
    /// dupped. Note that, if the original file descriptor has the CLOEXEC flag
    /// unset and is already larger than or equal to [`MIN_INTERNAL_FD`], this
    /// function will not set the CLOEXEC flag for the returned file descriptor.
    ///
    /// This function returns the new file descriptor on success. On error, it
    /// closes the original file descriptor and returns the error.
    fn move_fd_internal(&mut self, from: Fd) -> Result<Fd> {
        if from >= MIN_INTERNAL_FD {
            return Ok(from);
        }
        let new = self.dup(from, MIN_INTERNAL_FD, FdFlag::FD_CLOEXEC);
        self.close(from).ok();
        new
    }
    /// Switches the foreground process group with SIGTTOU blocked.
    ///
    /// This is a convenience function to change the foreground process group
    /// safely. If you call [`tcsetpgrp`](System::tcsetpgrp) from a background
    /// process, the process is stopped by SIGTTOU by default. To prevent this
    /// effect, SIGTTOU must be blocked or ignored when `tcsetpgrp` is called.
    /// This function uses [`sigmask`](System::sigmask) to block SIGTTOU before
    /// calling [`tcsetpgrp`](System::tcsetpgrp) and also to restore the
    /// original signal mask after `tcsetpgrp`.
    ///
    /// Use [`tcsetpgrp_without_block`](Self::tcsetpgrp_without_block) if you
    /// need to make sure the shell is in the foreground before changing the
    /// foreground job.
    fn tcsetpgrp_with_block(&mut self, fd: Fd, pgid: Pid) -> Result<()> {
        let mut sigttou = SigSet::empty();
        let mut old_set = SigSet::empty();
        sigttou.add(Signal::SIGTTOU);
        self.sigmask(SigmaskHow::SIG_BLOCK, Some(&sigttou), Some(&mut old_set))?;
        let result = self.tcsetpgrp(fd, pgid);
        let result_2 = self.sigmask(SigmaskHow::SIG_SETMASK, Some(&old_set), None);
        result.or(result_2)
    }
    /// Switches the foreground process group with the default SIGTTOU settings.
    ///
    /// This is a convenience function to ensure the shell has been in the
    /// foreground and optionally change the foreground process group. This
    /// function calls [`sigaction`](System::sigaction) to restore the action
    /// for SIGTTOU to the default disposition (which is to suspend the shell
    /// process), [`sigmask`](System::sigmask) to unblock SIGTTOU, and
    /// [`tcsetpgrp`](System::tcsetpgrp) to modify the foreground job. If the
    /// calling process is not in the foreground, `tcsetpgrp` will suspend the
    /// process with SIGTTOU until another job-controlling process resumes it in
    /// the foreground. After `tcsetpgrp` completes, this function calls
    /// `sigmask` and `sigaction` to restore the original state.
    ///
    /// Note that if `pgid` is the process group ID of the current process, this
    /// function does not change the foreground job, but the process is still
    /// subject to suspension if it has not been in the foreground.
    ///
    /// Use [`tcsetpgrp_with_block`](Self::tcsetpgrp_with_block) to change the
    /// job even if the current shell is not in the foreground.
    fn tcsetpgrp_without_block(&mut self, fd: Fd, pgid: Pid) -> Result<()> {
        match self.sigaction(Signal::SIGTTOU, SignalHandling::Default) {
            Err(e) => Err(e),
            Ok(old_handling) => {
                let mut sigttou = SigSet::empty();
                let mut old_set = SigSet::empty();
                sigttou.add(Signal::SIGTTOU);
                let result =
                    match self.sigmask(SigmaskHow::SIG_UNBLOCK, Some(&sigttou), Some(&mut old_set))
                    {
                        Err(e) => Err(e),
                        Ok(()) => {
                            let result = self.tcsetpgrp(fd, pgid);
                            let result_2 =
                                self.sigmask(SigmaskHow::SIG_SETMASK, Some(&old_set), None);
                            result.or(result_2)
                        }
                    };
                let result_2 = self.sigaction(Signal::SIGTTOU, old_handling).map(drop);
                result.or(result_2)
            }
        }
    }
}
impl<T: System + ?Sized> SystemEx for T {}
/// System shared by a reference counter.
///
/// A `SharedSystem` is a reference-counted container of a [`System`] instance
/// accompanied with an internal state for supporting asynchronous interactions
/// with the system. As it is reference-counted, cloning a `SharedSystem`
/// instance only increments the reference count without cloning the backing
/// system instance. This behavior allows calling `SharedSystem`'s methods
/// concurrently from different `async` tasks that each have a `SharedSystem`
/// instance sharing the same state.
///
/// `SharedSystem` implements [`System`] by delegating to the contained system
/// instance. You should avoid calling some of the `System` methods, however.
/// Prefer `async` functions provided by `SharedSystem` (e.g.,
/// [`read_async`](Self::read_async)) over raw system functions (e.g.,
/// [`read`](System::read)).
///
/// The following example illustrates how multiple concurrent tasks are run in a
/// single-threaded pool:
///
/// ```
/// # use yash_env::{SharedSystem, System, VirtualSystem};
/// # use futures_util::task::LocalSpawnExt;
/// let mut system = SharedSystem::new(Box::new(VirtualSystem::new()));
/// let mut system2 = system.clone();
/// let mut system3 = system.clone();
/// let (reader, writer) = system.pipe().unwrap();
/// let mut executor = futures_executor::LocalPool::new();
///
/// // We add a task that tries to read from the pipe, but nothing has been
/// // written to it, so the task is stalled.
/// let read_task = executor.spawner().spawn_local_with_handle(async move {
///     let mut buffer = [0; 1];
///     system.read_async(reader, &mut buffer).await.unwrap();
///     buffer[0]
/// });
/// executor.run_until_stalled();
///
/// // Let's add a task that writes to the pipe.
/// executor.spawner().spawn_local(async move {
///     system2.write_all(writer, &[123]).await.unwrap();
/// });
/// executor.run_until_stalled();
///
/// // The write task has written a byte to the pipe, but the read task is still
/// // stalled. We need to wake it up by calling `select`.
/// system3.select(false).unwrap();
///
/// // Now the read task can proceed to the end.
/// let number = executor.run_until(read_task.unwrap());
/// assert_eq!(number, 123);
/// ```
///
/// If there is a child process in the [`VirtualSystem`], you should call
/// [`SystemState::select_all`](self::virtual::SystemState::select_all) in
/// addition to [`SharedSystem::select`] so that the child process task is woken
/// up when needed.
/// (TBD code example)
#[derive(Clone, Debug)]
pub struct SharedSystem(pub(crate) Rc<RefCell<SelectSystem>>);
impl SharedSystem {
    /// Creates a new shared system.
    pub fn new(system: Box<dyn System>) -> Self {
        SharedSystem(Rc::new(RefCell::new(SelectSystem::new(system))))
    }
    fn set_nonblocking(&mut self, fd: Fd) -> Result<OFlag> {
        let mut inner = self.0.borrow_mut();
        let flags = inner.system.fcntl_getfl(fd)?;
        if !flags.contains(OFlag::O_NONBLOCK) {
            inner.system.fcntl_setfl(fd, flags | OFlag::O_NONBLOCK)?;
        }
        Ok(flags)
    }
    fn reset_nonblocking(&mut self, fd: Fd, old_flags: OFlag) {
        if !old_flags.contains(OFlag::O_NONBLOCK) {
            let _: Result<()> = self.0.borrow_mut().system.fcntl_setfl(fd, old_flags);
        }
    }
    /// Reads from the file descriptor.
    ///
    /// This function waits for one or more bytes to be available for reading.
    /// If successful, returns the number of bytes read.
    pub async fn read_async(&mut self, fd: Fd, buffer: &mut [u8]) -> Result<usize> {
        let flags = self.set_nonblocking(fd)?;
        // We need to retain a strong reference to the waker outside the poll_fn
        // function because SelectSystem only retains a weak reference to it.
        // This allows SelectSystem to discard defunct wakers if this async task
        // is aborted.
        let waker = Rc::new(RefCell::new(None));
        let result = poll_fn(|context| {
            let mut inner = self.0.borrow_mut();
            match inner.system.read(fd, buffer) {
                Err(Errno::EAGAIN) => {
                    *waker.borrow_mut() = Some(context.waker().clone());
                    inner.io.wait_for_reading(fd, &waker);
                    Poll::Pending
                }
                result => Poll::Ready(result),
            }
        })
        .await;
        self.reset_nonblocking(fd, flags);
        result
    }
    /// Writes to the file descriptor.
    ///
    /// This function calls [`System::write`] repeatedly until the whole
    /// `buffer` is written to the FD. If the `buffer` is empty, `write` is not
    /// called at all, so any error that would be returned from `write` is not
    /// returned.
    ///
    /// This function silently ignores signals that may interrupt writes.
    pub async fn write_all(&mut self, fd: Fd, mut buffer: &[u8]) -> Result<usize> {
        if buffer.is_empty() {
            return Ok(0);
        }
        let flags = self.set_nonblocking(fd)?;
        let mut written = 0;
        // We need to retain a strong reference to the waker outside the poll_fn
        // function because SelectSystem only retains a weak reference to it.
        // This allows SelectSystem to discard defunct wakers if this async task
        // is aborted.
        let waker = Rc::new(RefCell::new(None));
        let result = poll_fn(|context| {
            let mut inner = self.0.borrow_mut();
            match inner.system.write(fd, buffer) {
                Ok(count) => {
                    written += count;
                    buffer = &buffer[count..];
                    if buffer.is_empty() {
                        return Poll::Ready(Ok(written));
                    }
                }
                Err(Errno::EAGAIN | Errno::EINTR) => (),
                Err(error) => return Poll::Ready(Err(error)),
            }
            *waker.borrow_mut() = Some(context.waker().clone());
            inner.io.wait_for_writing(fd, &waker);
            Poll::Pending
        })
        .await;
        self.reset_nonblocking(fd, flags);
        result
    }
    /// Convenience function for printing a message to the standard error
    pub async fn print_error(&mut self, message: &str) {
        _ = self.write_all(Fd::STDERR, message.as_bytes()).await;
    }
    /// Waits until the specified time point.
    pub async fn wait_until(&self, target: Instant) {
        // We need to retain a strong reference to the waker outside the poll_fn
        // function because SelectSystem only retains a weak reference to it.
        // This allows SelectSystem to discard defunct wakers if this async task
        // is aborted.
        let waker = Rc::new(RefCell::new(None));
        poll_fn(|context| {
            let mut system = self.0.borrow_mut();
            let now = system.now();
            if now >= target {
                return Poll::Ready(());
            }
            *waker.borrow_mut() = Some(context.waker().clone());
            let waker = Rc::downgrade(&waker);
            system.time.push(Timeout { target, waker });
            Poll::Pending
        })
        .await
    }
    /// Waits for some signals to be delivered to this process.
    ///
    /// Before calling this function, you need to [set signal
    /// handling](Self::set_signal_handling) to `Catch`. Without doing so, this
    /// function cannot detect the receipt of the signals.
    ///
    /// Returns an array of signals that were caught.
    ///
    /// If this `SharedSystem` is part of an [`Env`], you should call
    /// [`Env::wait_for_signals`] rather than calling this function directly
    /// so that the trap set can remember the caught signal.
    pub async fn wait_for_signals(&self) -> Rc<[Signal]> {
        let status = self.0.borrow_mut().signal.wait_for_signals();
        poll_fn(|context| {
            let mut status = status.borrow_mut();
            let dummy_status = SignalStatus::Expected(None);
            let old_status = std::mem::replace(&mut *status, dummy_status);
            match old_status {
                SignalStatus::Caught(signals) => Poll::Ready(signals),
                SignalStatus::Expected(_) => {
                    *status = SignalStatus::Expected(Some(context.waker().clone()));
                    Poll::Pending
                }
            }
        })
        .await
    }
    /// Waits for a signal to be delivered to this process.
    ///
    /// Before calling this function, you need to [set signal
    /// handling](Self::set_signal_handling) to `Catch`.
    /// Without doing so, this function cannot detect the receipt of the signal.
    ///
    /// If this `SharedSystem` is part of an [`Env`], you should call
    /// [`Env::wait_for_signal`] rather than calling this function directly
    /// so that the trap set can remember the caught signal.
    pub async fn wait_for_signal(&self, signal: Signal) {
        while !self.wait_for_signals().await.contains(&signal) {}
    }
    /// Waits for a next event to occur.
    ///
    /// This function calls [`System::select`] with arguments computed from the
    /// current internal state of the `SharedSystem`. It will wake up tasks
    /// waiting for the file descriptor to be ready in
    /// [`read_async`](Self::read_async) and [`write_all`](Self::write_all) or
    /// for a signal to be caught in [`wait_for_signal`](Self::wait_for_signal).
    /// If no tasks are woken for FDs or signals and `poll` is false, this
    /// function will block until the first task waiting for a specific time
    /// point is woken.
    ///
    /// If poll is true, this function does not block, so it may not wake up any
    /// tasks.
    ///
    /// This function may wake up a task even if the condition it is expecting
    /// has not yet been met.
    pub fn select(&self, poll: bool) -> Result<()> {
        self.0.borrow_mut().select(poll)
    }
}
impl System for SharedSystem {
    fn fstat(&self, fd: Fd) -> Result<FileStat> {
        self.0.borrow().fstat(fd)
    }
    fn fstatat(&self, dir_fd: Fd, path: &CStr, flags: AtFlags) -> Result<FileStat> {
        self.0.borrow().fstatat(dir_fd, path, flags)
    }
    fn is_executable_file(&self, path: &CStr) -> bool {
        self.0.borrow().is_executable_file(path)
    }
    fn is_directory(&self, path: &CStr) -> bool {
        self.0.borrow().is_directory(path)
    }
    fn pipe(&mut self) -> Result<(Fd, Fd)> {
        self.0.borrow_mut().pipe()
    }
    fn dup(&mut self, from: Fd, to_min: Fd, flags: FdFlag) -> Result<Fd> {
        self.0.borrow_mut().dup(from, to_min, flags)
    }
    fn dup2(&mut self, from: Fd, to: Fd) -> Result<Fd> {
        self.0.borrow_mut().dup2(from, to)
    }
    fn open(&mut self, path: &CStr, option: OFlag, mode: Mode) -> Result<Fd> {
        self.0.borrow_mut().open(path, option, mode)
    }
    fn open_tmpfile(&mut self, parent_dir: &Path) -> Result<Fd> {
        self.0.borrow_mut().open_tmpfile(parent_dir)
    }
    fn close(&mut self, fd: Fd) -> Result<()> {
        self.0.borrow_mut().close(fd)
    }
    fn fcntl_getfl(&self, fd: Fd) -> Result<OFlag> {
        self.0.borrow().fcntl_getfl(fd)
    }
    fn fcntl_setfl(&mut self, fd: Fd, flags: OFlag) -> Result<()> {
        self.0.borrow_mut().fcntl_setfl(fd, flags)
    }
    fn fcntl_getfd(&self, fd: Fd) -> Result<FdFlag> {
        self.0.borrow().fcntl_getfd(fd)
    }
    fn fcntl_setfd(&mut self, fd: Fd, flags: FdFlag) -> Result<()> {
        self.0.borrow_mut().fcntl_setfd(fd, flags)
    }
    fn isatty(&self, fd: Fd) -> Result<bool> {
        self.0.borrow().isatty(fd)
    }
    fn read(&mut self, fd: Fd, buffer: &mut [u8]) -> Result<usize> {
        self.0.borrow_mut().read(fd, buffer)
    }
    fn write(&mut self, fd: Fd, buffer: &[u8]) -> Result<usize> {
        self.0.borrow_mut().write(fd, buffer)
    }
    fn lseek(&mut self, fd: Fd, position: SeekFrom) -> Result<u64> {
        self.0.borrow_mut().lseek(fd, position)
    }
    fn fdopendir(&mut self, fd: Fd) -> Result<Box<dyn Dir>> {
        self.0.borrow_mut().fdopendir(fd)
    }
    fn opendir(&mut self, path: &CStr) -> Result<Box<dyn Dir>> {
        self.0.borrow_mut().opendir(path)
    }
    fn umask(&mut self, mask: Mode) -> Mode {
        self.0.borrow_mut().umask(mask)
    }
    fn now(&self) -> Instant {
        self.0.borrow().now()
    }
    fn times(&self) -> Result<Times> {
        self.0.borrow().times()
    }
    fn sigmask(
        &mut self,
        how: SigmaskHow,
        set: Option<&SigSet>,
        old_set: Option<&mut SigSet>,
    ) -> Result<()> {
        (**self.0.borrow_mut()).sigmask(how, set, old_set)
    }
    fn sigaction(&mut self, signal: Signal, action: SignalHandling) -> Result<SignalHandling> {
        self.0.borrow_mut().sigaction(signal, action)
    }
    fn caught_signals(&mut self) -> Vec<Signal> {
        self.0.borrow_mut().caught_signals()
    }
    fn kill(
        &mut self,
        target: Pid,
        signal: Option<Signal>,
    ) -> Pin<Box<(dyn Future<Output = Result<()>>)>> {
        self.0.borrow_mut().kill(target, signal)
    }
    fn select(
        &mut self,
        readers: &mut FdSet,
        writers: &mut FdSet,
        timeout: Option<&TimeSpec>,
        signal_mask: Option<&SigSet>,
    ) -> Result<c_int> {
        (**self.0.borrow_mut()).select(readers, writers, timeout, signal_mask)
    }
    fn getpid(&self) -> Pid {
        self.0.borrow().getpid()
    }
    fn getppid(&self) -> Pid {
        self.0.borrow().getppid()
    }
    fn getpgrp(&self) -> Pid {
        self.0.borrow().getpgrp()
    }
    fn setpgid(&mut self, pid: Pid, pgid: Pid) -> Result<()> {
        self.0.borrow_mut().setpgid(pid, pgid)
    }
    fn tcgetpgrp(&self, fd: Fd) -> Result<Pid> {
        self.0.borrow().tcgetpgrp(fd)
    }
    fn tcsetpgrp(&mut self, fd: Fd, pgid: Pid) -> Result<()> {
        self.0.borrow_mut().tcsetpgrp(fd, pgid)
    }
    fn new_child_process(&mut self) -> Result<ChildProcessStarter> {
        self.0.borrow_mut().new_child_process()
    }
    fn wait(&mut self, target: Pid) -> Result<Option<(Pid, ProcessState)>> {
        self.0.borrow_mut().wait(target)
    }
    fn execve(&mut self, path: &CStr, args: &[CString], envs: &[CString]) -> Result<Infallible> {
        self.0.borrow_mut().execve(path, args, envs)
    }
    fn getcwd(&self) -> Result<PathBuf> {
        self.0.borrow().getcwd()
    }
    fn chdir(&mut self, path: &CStr) -> Result<()> {
        self.0.borrow_mut().chdir(path)
    }
    fn getpwnam_dir(&self, name: &str) -> Result<Option<PathBuf>> {
        self.0.borrow().getpwnam_dir(name)
    }
    fn confstr_path(&self) -> Result<OsString> {
        self.0.borrow().confstr_path()
    }
    fn getrlimit(&self, resource: Resource) -> std::io::Result<LimitPair> {
        self.0.borrow().getrlimit(resource)
    }
    fn setrlimit(&mut self, resource: Resource, limits: LimitPair) -> std::io::Result<()> {
        self.0.borrow_mut().setrlimit(resource, limits)
    }
}
impl SignalSystem for SharedSystem {
    fn set_signal_handling(
        &mut self,
        signal: nix::sys::signal::Signal,
        handling: SignalHandling,
    ) -> Result<SignalHandling> {
        self.0.borrow_mut().set_signal_handling(signal, handling)
    }
}
/// [System] extended with internal state to support asynchronous functions.
///
/// A `SelectSystem` is a container of a `System` and internal data a
/// [`SharedSystem`] uses to implement asynchronous I/O, signal handling, and
/// timer function. The contained `System` can be accessed via the `Deref` and
/// `DerefMut` implementations.
///
/// TODO Elaborate
#[derive(Debug)]
pub(crate) struct SelectSystem {
    system: Box<dyn System>,
    io: AsyncIo,
    time: AsyncTime,
    signal: AsyncSignal,
    wait_mask: Option<SigSet>,
}
impl Deref for SelectSystem {
    type Target = Box<dyn System>;
    fn deref(&self) -> &Box<dyn System> {
        &self.system
    }
}
impl DerefMut for SelectSystem {
    fn deref_mut(&mut self) -> &mut Box<dyn System> {
        &mut self.system
    }
}
impl SelectSystem {
    /// Creates a new `SelectSystem` that wraps the given `System`.
    pub fn new(system: Box<dyn System>) -> Self {
        SelectSystem {
            system,
            io: AsyncIo::new(),
            time: AsyncTime::new(),
            signal: AsyncSignal::new(),
            wait_mask: None,
        }
    }
    /// Calls `sigmask` and updates `self.wait_mask`.
    fn sigmask(&mut self, how: SigmaskHow, signal: Signal) -> Result<()> {
        let mut set = SigSet::empty();
        let mut old_set = SigSet::empty();
        set.add(signal);
        self.system.sigmask(how, Some(&set), Some(&mut old_set))?;
        self.wait_mask.get_or_insert(old_set).remove(signal);
        Ok(())
    }
    /// Implements signal handler update.
    ///
    /// See [`SharedSystem::set_signal_handling`].
    pub fn set_signal_handling(
        &mut self,
        signal: Signal,
        handling: SignalHandling,
    ) -> Result<SignalHandling> {
        // The order of sigmask and sigaction is important to prevent the signal
        // from being caught. The signal must be caught only when the select
        // function temporarily unblocks the signal. This is to avoid race
        // condition.
        match handling {
            SignalHandling::Default | SignalHandling::Ignore => {
                let old_handling = self.system.sigaction(signal, handling)?;
                self.sigmask(SigmaskHow::SIG_UNBLOCK, signal)?;
                Ok(old_handling)
            }
            SignalHandling::Catch => {
                self.sigmask(SigmaskHow::SIG_BLOCK, signal)?;
                self.system.sigaction(signal, handling)
            }
        }
    }
    fn wake_timeouts(&mut self) {
        if !self.time.is_empty() {
            let now = self.now();
            self.time.wake_if_passed(now);
        }
        self.time.gc();
    }
    fn wake_on_signals(&mut self) {
        let signals = self.system.caught_signals();
        if signals.is_empty() {
            self.signal.gc()
        } else {
            self.signal.wake(&signals.into())
        }
    }
    /// Implements the select function for `SharedSystem`.
    ///
    /// See [`SharedSystem::select`].
    pub fn select(&mut self, poll: bool) -> Result<()> {
        let mut readers = self.io.readers();
        let mut writers = self.io.writers();
        let timeout = if poll {
            Some(TimeSpec::from(Duration::ZERO))
        } else {
            self.time.first_target().map(|t| {
                let now = self.now();
                let duration = t.saturating_duration_since(now);
                TimeSpec::from(duration)
            })
        };
        let inner_result = self.system.select(
            &mut readers,
            &mut writers,
            timeout.as_ref(),
            self.wait_mask.as_ref(),
        );
        let final_result = match inner_result {
            Ok(_) => {
                self.io.wake(readers, writers);
                Ok(())
            }
            Err(Errno::EBADF) => {
                // Some of the readers and writers are invalid but we cannot
                // tell which, so we wake up everything.
                self.io.wake_all();
                Err(Errno::EBADF)
            }
            Err(Errno::EINTR) => Ok(()),
            Err(error) => Err(error),
        };
        self.io.gc();
        self.wake_timeouts();
        self.wake_on_signals();
        final_result
    }
}
/// Helper for `select`ing on FDs.
///
/// An `AsyncIo` is a set of [Waker]s that are waiting for an FD to be ready for
/// reading or writing.
///
/// TODO Elaborate
#[derive(Clone, Debug, Default)]
struct AsyncIo {
    readers: Vec<FdAwaiter>,
    writers: Vec<FdAwaiter>,
}
#[derive(Clone, Debug)]
struct FdAwaiter {
    fd: Fd,
    waker: Weak<RefCell<Option<Waker>>>,
}
/// Wakes the waker when `FdAwaiter` is dropped.
impl Drop for FdAwaiter {
    fn drop(&mut self) {
        if let Some(waker) = self.waker.upgrade() {
            if let Some(waker) = waker.borrow_mut().take() {
                waker.wake();
            }
        }
    }
}
impl AsyncIo {
    /// Returns a new empty `AsyncIo`.
    pub fn new() -> Self {
        Self::default()
    }
    /// Returns a set of FDs waiting for reading.
    ///
    /// The return value should be passed to the `select` or `pselect` system
    /// call.
    pub fn readers(&self) -> FdSet {
        let mut set = FdSet::new();
        for reader in &self.readers {
            set.insert(reader.fd)
                .expect("file descriptor out of supported range");
        }
        set
    }
    /// Returns a set of FDs waiting for writing.
    ///
    /// The return value should be passed to the `select` or `pselect` system
    /// call.
    pub fn writers(&self) -> FdSet {
        let mut set = FdSet::new();
        for writer in &self.writers {
            set.insert(writer.fd)
                .expect("file descriptor out of supported range");
        }
        set
    }
    /// Adds an awaiter for reading.
    pub fn wait_for_reading(&mut self, fd: Fd, waker: &Rc<RefCell<Option<Waker>>>) {
        let waker = Rc::downgrade(waker);
        self.readers.push(FdAwaiter { fd, waker });
    }
    /// Adds an awaiter for writing.
    pub fn wait_for_writing(&mut self, fd: Fd, waker: &Rc<RefCell<Option<Waker>>>) {
        let waker = Rc::downgrade(waker);
        self.writers.push(FdAwaiter { fd, waker });
    }
    /// Wakes awaiters that are ready for reading/writing.
    ///
    /// FDs in `readers` and `writers` are considered ready and corresponding
    /// awaiters are woken. Once woken, awaiters are removed from `self`.
    pub fn wake(&mut self, readers: FdSet, writers: FdSet) {
        self.readers.retain(|awaiter| !readers.contains(awaiter.fd));
        self.writers.retain(|awaiter| !writers.contains(awaiter.fd));
    }
    /// Wakes and removes all awaiters.
    pub fn wake_all(&mut self) {
        self.readers.clear();
        self.writers.clear();
    }
    /// Discards `FdAwaiter`s having a defunct waker.
    pub fn gc(&mut self) {
        let is_alive = |awaiter: &FdAwaiter| awaiter.waker.strong_count() > 0;
        self.readers.retain(is_alive);
        self.writers.retain(is_alive);
    }
}
/// Helper for `select`ing on time.
///
/// An `AsyncTime` is a set of [Waker]s that are waiting for a specific time to
/// come.
#[derive(Clone, Debug, Default)]
struct AsyncTime {
    timeouts: BinaryHeap<Reverse<Timeout>>,
}
#[derive(Clone, Debug)]
struct Timeout {
    target: Instant,
    waker: Weak<RefCell<Option<Waker>>>,
}
impl PartialEq for Timeout {
    fn eq(&self, rhs: &Self) -> bool {
        self.target == rhs.target
    }
}
impl Eq for Timeout {}
impl PartialOrd for Timeout {
    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
        Some(self.cmp(rhs))
    }
}
impl Ord for Timeout {
    fn cmp(&self, rhs: &Self) -> Ordering {
        self.target.cmp(&rhs.target)
    }
}
/// Wakes the waker when `Timeout` is dropped.
impl Drop for Timeout {
    fn drop(&mut self) {
        if let Some(waker) = self.waker.upgrade() {
            if let Some(waker) = waker.borrow_mut().take() {
                waker.wake();
            }
        }
    }
}
impl AsyncTime {
    #[must_use]
    fn new() -> Self {
        Self::default()
    }
    #[must_use]
    fn is_empty(&self) -> bool {
        self.timeouts.is_empty()
    }
    fn push(&mut self, timeout: Timeout) {
        self.timeouts.push(Reverse(timeout))
    }
    #[must_use]
    fn first_target(&self) -> Option<Instant> {
        self.timeouts.peek().map(|timeout| timeout.0.target)
    }
    fn wake_if_passed(&mut self, now: Instant) {
        while let Some(timeout) = self.timeouts.peek_mut() {
            if !timeout.0.passed(now) {
                break;
            }
            PeekMut::pop(timeout);
        }
    }
    fn gc(&mut self) {
        self.timeouts.retain(|t| t.0.waker.strong_count() > 0);
    }
}
impl Timeout {
    fn passed(&self, now: Instant) -> bool {
        self.target <= now
    }
}
/// Helper for `select`ing on signals.
///
/// An `AsyncSignal` is a set of [Waker]s that are waiting for a signal to be
/// caught by the current process.
///
/// TODO Elaborate
#[derive(Clone, Debug, Default)]
struct AsyncSignal {
    awaiters: Vec<Weak<RefCell<SignalStatus>>>,
}
#[derive(Clone, Debug)]
enum SignalStatus {
    Expected(Option<Waker>),
    Caught(Rc<[Signal]>),
}
impl AsyncSignal {
    /// Returns a new empty `AsyncSignal`.
    pub fn new() -> Self {
        Self::default()
    }
    /// Removes internal weak pointers whose `SignalStatus` has gone.
    pub fn gc(&mut self) {
        self.awaiters.retain(|awaiter| awaiter.strong_count() > 0);
    }
    /// Adds an awaiter for signals.
    ///
    /// This function returns a reference-counted
    /// `SignalStatus::Expected(None)`. The caller must set a waker to the
    /// returned `SignalStatus::Expected`. When signals are caught, the waker is
    /// woken and replaced with `SignalStatus::Caught(signals)`. The caller can
    /// replace the waker in the `SignalStatus::Expected` with another if the
    /// previous waker gets expired and the caller wants to be woken again.
    pub fn wait_for_signals(&mut self) -> Rc<RefCell<SignalStatus>> {
        let status = Rc::new(RefCell::new(SignalStatus::Expected(None)));
        self.awaiters.push(Rc::downgrade(&status));
        status
    }
    /// Wakes awaiters for caught signals.
    ///
    /// This function wakes up all wakers in pending `SignalStatus`es and
    /// removes them from `self`.
    ///
    /// This function borrows `SignalStatus`es returned from `wait_for_signals`
    /// so you must not have conflicting borrows.
    pub fn wake(&mut self, signals: &Rc<[Signal]>) {
        for status in std::mem::take(&mut self.awaiters) {
            if let Some(status) = status.upgrade() {
                let mut status_ref = status.borrow_mut();
                let new_status = SignalStatus::Caught(Rc::clone(signals));
                let old_status = std::mem::replace(&mut *status_ref, new_status);
                drop(status_ref);
                if let SignalStatus::Expected(Some(waker)) = old_status {
                    waker.wake();
                }
            }
        }
    }
}
#[cfg(test)]
mod tests {
    use super::*;
    use crate::system::r#virtual::VirtualSystem;
    use crate::system::r#virtual::PIPE_SIZE;
    use assert_matches::assert_matches;
    use futures_util::task::noop_waker;
    use futures_util::task::noop_waker_ref;
    use futures_util::FutureExt;
    use std::future::Future;
    use std::rc::Rc;
    use std::task::Context;
    #[test]
    fn shared_system_read_async_ready() {
        let mut system = SharedSystem::new(Box::new(VirtualSystem::new()));
        let (reader, writer) = system.pipe().unwrap();
        system.write(writer, &[42]).unwrap();
        let mut buffer = [0; 2];
        let result = system.read_async(reader, &mut buffer).now_or_never();
        assert_eq!(result, Some(Ok(1)));
        assert_eq!(buffer[..1], [42]);
    }
    #[test]
    fn shared_system_read_async_not_ready_at_first() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        let system2 = system.clone();
        let (reader, writer) = system.pipe().unwrap();
        let mut context = Context::from_waker(noop_waker_ref());
        let mut buffer = [0; 2];
        let mut future = Box::pin(system.read_async(reader, &mut buffer));
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        let result = system2.select(false);
        assert_eq!(result, Ok(()));
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        state.borrow_mut().processes[&process_id].fds[&writer]
            .open_file_description
            .borrow_mut()
            .write(&[56])
            .unwrap();
        let result = future.as_mut().poll(&mut context);
        drop(future);
        assert_eq!(result, Poll::Ready(Ok(1)));
        assert_eq!(buffer[..1], [56]);
    }
    #[test]
    fn shared_system_write_all_ready() {
        let mut system = SharedSystem::new(Box::new(VirtualSystem::new()));
        let (reader, writer) = system.pipe().unwrap();
        let result = system.write_all(writer, &[17]).now_or_never().unwrap();
        assert_eq!(result, Ok(1));
        let mut buffer = [0; 2];
        system.read(reader, &mut buffer).unwrap();
        assert_eq!(buffer[..1], [17]);
    }
    #[test]
    fn shared_system_write_all_not_ready_at_first() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        let (reader, writer) = system.pipe().unwrap();
        state.borrow_mut().processes[&process_id].fds[&writer]
            .open_file_description
            .borrow_mut()
            .write(&[42; PIPE_SIZE])
            .unwrap();
        let mut context = Context::from_waker(noop_waker_ref());
        let mut out_buffer = [87; PIPE_SIZE];
        out_buffer[0] = 0;
        out_buffer[1] = 1;
        out_buffer[PIPE_SIZE - 2] = 0xFE;
        out_buffer[PIPE_SIZE - 1] = 0xFF;
        let mut future = Box::pin(system.write_all(writer, &out_buffer));
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        let mut in_buffer = [0; PIPE_SIZE - 1];
        state.borrow_mut().processes[&process_id].fds[&reader]
            .open_file_description
            .borrow_mut()
            .read(&mut in_buffer)
            .unwrap();
        assert_eq!(in_buffer, [42; PIPE_SIZE - 1]);
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        in_buffer[0] = 0;
        state.borrow_mut().processes[&process_id].fds[&reader]
            .open_file_description
            .borrow_mut()
            .read(&mut in_buffer[..1])
            .unwrap();
        assert_eq!(in_buffer[..1], [42; 1]);
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Ready(Ok(out_buffer.len())));
        state.borrow_mut().processes[&process_id].fds[&reader]
            .open_file_description
            .borrow_mut()
            .read(&mut in_buffer)
            .unwrap();
        assert_eq!(in_buffer, out_buffer[..PIPE_SIZE - 1]);
        state.borrow_mut().processes[&process_id].fds[&reader]
            .open_file_description
            .borrow_mut()
            .read(&mut in_buffer)
            .unwrap();
        assert_eq!(in_buffer[..1], out_buffer[PIPE_SIZE - 1..]);
    }
    #[test]
    fn shared_system_write_all_empty() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        let (_reader, writer) = system.pipe().unwrap();
        state.borrow_mut().processes[&process_id].fds[&writer]
            .open_file_description
            .borrow_mut()
            .write(&[0; PIPE_SIZE])
            .unwrap();
        // Even if the pipe is full, empty write succeeds.
        let mut context = Context::from_waker(noop_waker_ref());
        let mut future = Box::pin(system.write_all(writer, &[]));
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Ready(Ok(0)));
        // TODO Make sure `write` is not called at all
    }
    // TODO Test SharedSystem::write_all where second write returns EINTR
    #[test]
    fn shared_system_wait_until() {
        let system = VirtualSystem::new();
        let state = Rc::clone(&system.state);
        let system = SharedSystem::new(Box::new(system));
        let start = Instant::now();
        state.borrow_mut().now = Some(start);
        let target = start + Duration::from_millis(1_125);
        let mut future = Box::pin(system.wait_until(target));
        let mut context = Context::from_waker(noop_waker_ref());
        let poll = future.as_mut().poll(&mut context);
        assert_eq!(poll, Poll::Pending);
        system.select(false).unwrap();
        let poll = future.as_mut().poll(&mut context);
        assert_eq!(poll, Poll::Ready(()));
        assert_eq!(state.borrow().now, Some(target));
    }
    #[test]
    fn shared_system_wait_for_signals() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        system
            .set_signal_handling(Signal::SIGCHLD, SignalHandling::Catch)
            .unwrap();
        system
            .set_signal_handling(Signal::SIGINT, SignalHandling::Catch)
            .unwrap();
        system
            .set_signal_handling(Signal::SIGUSR1, SignalHandling::Catch)
            .unwrap();
        let mut context = Context::from_waker(noop_waker_ref());
        let mut future = Box::pin(system.wait_for_signals());
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        {
            let mut state = state.borrow_mut();
            let process = state.processes.get_mut(&process_id).unwrap();
            assert!(process.blocked_signals().contains(Signal::SIGCHLD));
            assert!(process.blocked_signals().contains(Signal::SIGINT));
            assert!(process.blocked_signals().contains(Signal::SIGUSR1));
            let _ = process.raise_signal(Signal::SIGCHLD);
            let _ = process.raise_signal(Signal::SIGINT);
        }
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        system.select(false).unwrap();
        let result = future.as_mut().poll(&mut context);
        assert_matches!(result, Poll::Ready(signals) => {
            assert_eq!(signals.len(), 2);
            assert!(signals.contains(&Signal::SIGCHLD));
            assert!(signals.contains(&Signal::SIGINT));
        });
    }
    #[test]
    fn shared_system_wait_for_signal_returns_on_caught() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        system
            .set_signal_handling(Signal::SIGCHLD, SignalHandling::Catch)
            .unwrap();
        let mut context = Context::from_waker(noop_waker_ref());
        let mut future = Box::pin(system.wait_for_signal(Signal::SIGCHLD));
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        {
            let mut state = state.borrow_mut();
            let process = state.processes.get_mut(&process_id).unwrap();
            assert!(process.blocked_signals().contains(Signal::SIGCHLD));
            let _ = process.raise_signal(Signal::SIGCHLD);
        }
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        system.select(false).unwrap();
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Ready(()));
    }
    #[test]
    fn shared_system_wait_for_signal_ignores_irrelevant_signals() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        system
            .set_signal_handling(Signal::SIGINT, SignalHandling::Catch)
            .unwrap();
        system
            .set_signal_handling(Signal::SIGTERM, SignalHandling::Catch)
            .unwrap();
        let mut context = Context::from_waker(noop_waker_ref());
        let mut future = Box::pin(system.wait_for_signal(Signal::SIGINT));
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        {
            let mut state = state.borrow_mut();
            let process = state.processes.get_mut(&process_id).unwrap();
            let _ = process.raise_signal(Signal::SIGCHLD);
            let _ = process.raise_signal(Signal::SIGTERM);
        }
        system.select(false).unwrap();
        let result = future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
    }
    #[test]
    fn shared_system_select_consumes_all_pending_signals() {
        let system = VirtualSystem::new();
        let process_id = system.process_id;
        let state = Rc::clone(&system.state);
        let mut system = SharedSystem::new(Box::new(system));
        system
            .set_signal_handling(Signal::SIGINT, SignalHandling::Catch)
            .unwrap();
        system
            .set_signal_handling(Signal::SIGTERM, SignalHandling::Catch)
            .unwrap();
        {
            let mut state = state.borrow_mut();
            let process = state.processes.get_mut(&process_id).unwrap();
            let _ = process.raise_signal(Signal::SIGINT);
            let _ = process.raise_signal(Signal::SIGTERM);
        }
        system.select(false).unwrap();
        let state = state.borrow();
        let process = state.processes.get(&process_id).unwrap();
        let blocked = process.blocked_signals();
        assert!(blocked.contains(Signal::SIGINT));
        assert!(blocked.contains(Signal::SIGTERM));
        let pending = process.pending_signals();
        assert!(!pending.contains(Signal::SIGINT));
        assert!(!pending.contains(Signal::SIGTERM));
    }
    #[test]
    fn shared_system_select_does_not_wake_signal_waiters_on_io() {
        let system = VirtualSystem::new();
        let mut system_1 = SharedSystem::new(Box::new(system));
        let mut system_2 = system_1.clone();
        let mut system_3 = system_1.clone();
        let (reader, writer) = system_1.pipe().unwrap();
        system_2
            .set_signal_handling(Signal::SIGCHLD, SignalHandling::Catch)
            .unwrap();
        let mut buffer = [0];
        let mut read_future = Box::pin(system_1.read_async(reader, &mut buffer));
        let mut signal_future = Box::pin(system_2.wait_for_signals());
        let mut context = Context::from_waker(noop_waker_ref());
        let result = read_future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        let result = signal_future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
        system_3.write(writer, &[42]).unwrap();
        system_3.select(false).unwrap();
        let result = read_future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Ready(Ok(1)));
        let result = signal_future.as_mut().poll(&mut context);
        assert_eq!(result, Poll::Pending);
    }
    #[test]
    fn shared_system_select_poll() {
        let system = VirtualSystem::new();
        let state = Rc::clone(&system.state);
        let system = SharedSystem::new(Box::new(system));
        let start = Instant::now();
        state.borrow_mut().now = Some(start);
        let target = start + Duration::from_millis(1_125);
        let mut future = Box::pin(system.wait_until(target));
        let mut context = Context::from_waker(noop_waker_ref());
        let poll = future.as_mut().poll(&mut context);
        assert_eq!(poll, Poll::Pending);
        system.select(true).unwrap();
        let poll = future.as_mut().poll(&mut context);
        assert_eq!(poll, Poll::Pending);
        assert_eq!(state.borrow().now, Some(start));
    }
    #[test]
    fn async_io_has_no_default_readers_or_writers() {
        let async_io = AsyncIo::new();
        assert_eq!(async_io.readers(), FdSet::new());
        assert_eq!(async_io.writers(), FdSet::new());
    }
    #[test]
    fn async_io_non_empty_readers_and_writers() {
        let mut async_io = AsyncIo::new();
        let waker = Rc::new(RefCell::new(Some(noop_waker())));
        async_io.wait_for_reading(Fd::STDIN, &waker);
        async_io.wait_for_writing(Fd::STDOUT, &waker);
        async_io.wait_for_writing(Fd::STDERR, &waker);
        let mut expected_readers = FdSet::new();
        expected_readers.insert(Fd::STDIN).unwrap();
        let mut expected_writers = FdSet::new();
        expected_writers.insert(Fd::STDOUT).unwrap();
        expected_writers.insert(Fd::STDERR).unwrap();
        assert_eq!(async_io.readers(), expected_readers);
        assert_eq!(async_io.writers(), expected_writers);
    }
    #[test]
    fn async_io_wake() {
        let mut async_io = AsyncIo::new();
        let waker = Rc::new(RefCell::new(Some(noop_waker())));
        async_io.wait_for_reading(Fd(3), &waker);
        async_io.wait_for_reading(Fd(4), &waker);
        async_io.wait_for_writing(Fd(4), &waker);
        let mut fds = FdSet::new();
        fds.insert(Fd(4)).unwrap();
        async_io.wake(fds, fds);
        let mut expected_readers = FdSet::new();
        expected_readers.insert(Fd(3)).unwrap();
        assert_eq!(async_io.readers(), expected_readers);
        assert_eq!(async_io.writers(), FdSet::new());
    }
    #[test]
    fn async_io_wake_all() {
        let mut async_io = AsyncIo::new();
        let waker = Rc::new(RefCell::new(Some(noop_waker())));
        async_io.wait_for_reading(Fd::STDIN, &waker);
        async_io.wait_for_writing(Fd::STDOUT, &waker);
        async_io.wait_for_writing(Fd::STDERR, &waker);
        async_io.wake_all();
        assert_eq!(async_io.readers(), FdSet::new());
        assert_eq!(async_io.writers(), FdSet::new());
    }
    #[test]
    fn async_time_first_target() {
        let mut async_time = AsyncTime::new();
        let now = Instant::now();
        assert_eq!(async_time.first_target(), None);
        async_time.push(Timeout {
            target: now + Duration::from_secs(2),
            waker: Weak::default(),
        });
        async_time.push(Timeout {
            target: now + Duration::from_secs(1),
            waker: Weak::default(),
        });
        async_time.push(Timeout {
            target: now + Duration::from_secs(3),
            waker: Weak::default(),
        });
        assert_eq!(
            async_time.first_target(),
            Some(now + Duration::from_secs(1))
        );
    }
    #[test]
    fn async_time_wake_if_passed() {
        let mut async_time = AsyncTime::new();
        let now = Instant::now();
        let waker = Rc::new(RefCell::new(Some(noop_waker())));
        async_time.push(Timeout {
            target: now,
            waker: Rc::downgrade(&waker),
        });
        async_time.push(Timeout {
            target: now + Duration::new(1, 0),
            waker: Rc::downgrade(&waker),
        });
        async_time.push(Timeout {
            target: now + Duration::new(1, 1),
            waker: Rc::downgrade(&waker),
        });
        async_time.push(Timeout {
            target: now + Duration::new(2, 0),
            waker: Rc::downgrade(&waker),
        });
        assert_eq!(async_time.timeouts.len(), 4);
        async_time.wake_if_passed(now + Duration::new(1, 0));
        assert_eq!(
            async_time.timeouts.pop().unwrap().0.target,
            now + Duration::new(1, 1)
        );
        assert_eq!(
            async_time.timeouts.pop().unwrap().0.target,
            now + Duration::new(2, 0)
        );
        assert!(async_time.timeouts.is_empty(), "{:?}", async_time.timeouts);
    }
    #[test]
    fn async_signal_wake() {
        let mut async_signal = AsyncSignal::new();
        let status_1 = async_signal.wait_for_signals();
        let status_2 = async_signal.wait_for_signals();
        *status_1.borrow_mut() = SignalStatus::Expected(Some(noop_waker()));
        *status_2.borrow_mut() = SignalStatus::Expected(Some(noop_waker()));
        async_signal.wake(&(Rc::new([Signal::SIGCHLD, Signal::SIGUSR1]) as Rc<[Signal]>));
        assert_matches!(&*status_1.borrow(), SignalStatus::Caught(signals) => {
            assert_eq!(**signals, [Signal::SIGCHLD, Signal::SIGUSR1]);
        });
        assert_matches!(&*status_2.borrow(), SignalStatus::Caught(signals) => {
            assert_eq!(**signals, [Signal::SIGCHLD, Signal::SIGUSR1]);
        });
    }
}