1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
//! This module contains types which implement the [`Tokens`] interface. You
//! won't often need to import this module unless you wish to explicitly name
//! the types in question.
//!
//! You should be able to remain generic by using `t: &mut impl Tokens<Item=char>` as a
//! function argument instead of naming concrete types like the ones here.
use super::{IntoTokens, TokenLocation, Tokens};
/// This is what we are given back if we call `into_tokens()` on
/// a `&[T]`. It implements the [`Tokens`] interface.
pub struct SliceTokens<'a, Item> {
slice: &'a [Item],
cursor: usize,
}
/// This implements [`TokenLocation`] and stores the location of
/// our current cursor into some slice.
#[derive(Clone, Copy, Eq, PartialEq, Hash, Ord, PartialOrd, Debug)]
pub struct SliceTokensLocation(usize);
impl TokenLocation for SliceTokensLocation {
fn offset(&self) -> usize {
self.0
}
}
impl<'a, Item> SliceTokens<'a, Item> {
/// Return the parsed portion of the slice.
pub fn consumed(&self) -> &'a [Item] {
&self.slice[..self.cursor]
}
/// Return the unparsed remainder of the slice.
pub fn remaining(&self) -> &'a [Item] {
&self.slice[self.cursor..]
}
}
impl<'a, Item> From<SliceTokens<'a, Item>> for &'a [Item] {
fn from(toks: SliceTokens<'a, Item>) -> Self {
toks.slice
}
}
impl<'a, Item> Tokens for SliceTokens<'a, Item> {
type Item = &'a Item;
type Location = SliceTokensLocation;
fn next(&mut self) -> Option<Self::Item> {
let res = self.slice.get(self.cursor);
self.cursor += 1;
res
}
fn location(&self) -> Self::Location {
SliceTokensLocation(self.cursor)
}
fn set_location(&mut self, location: Self::Location) {
self.cursor = location.0;
}
fn is_at_location(&self, location: &Self::Location) -> bool {
self.cursor == location.0
}
}
impl<'a, Item> IntoTokens<&'a Item> for SliceTokens<'a, Item> {
type Tokens = Self;
fn into_tokens(self) -> Self {
self
}
}
impl<'a, Item> IntoTokens<&'a Item> for &'a [Item] {
type Tokens = SliceTokens<'a, Item>;
fn into_tokens(self) -> Self::Tokens {
SliceTokens {
slice: self,
cursor: 0,
}
}
}
/// This is what we are given back if we call `into_tokens()` on
/// a `&str`. It implements the [`Tokens`] interface.
pub struct StrTokens<'a> {
str: &'a str,
cursor: usize,
}
/// This implements [`TokenLocation`] and stores the location of
/// our current cursor into some string. The location is the byte index
/// into the string and not the nth character we're up to (a character
/// may be represented by several bytes).
#[derive(Clone, Copy, Eq, PartialEq, Hash, Ord, PartialOrd, Debug)]
pub struct StrTokensLocation(usize);
impl TokenLocation for StrTokensLocation {
fn offset(&self) -> usize {
self.0
}
}
impl<'a> StrTokens<'a> {
/// Return the parsed portion of the str.
pub fn consumed(&self) -> &'a str {
&self.str[..self.cursor]
}
/// Return the unparsed remainder of the str.
pub fn remaining(&self) -> &'a str {
&self.str[self.cursor..]
}
}
impl<'a> From<StrTokens<'a>> for &'a str {
fn from(toks: StrTokens<'a>) -> Self {
toks.str
}
}
impl<'a> Tokens for StrTokens<'a> {
type Item = char;
type Location = StrTokensLocation;
fn next(&mut self) -> Option<Self::Item> {
if self.cursor == self.str.len() {
return None;
}
// Cursor should always start at a valid char boundary.
// So, we just find the next char boundary and return the
// char between those two.
let mut next_char_boundary = self.cursor + 1;
while !self.str.is_char_boundary(next_char_boundary) {
next_char_boundary += 1;
}
// We have to go to &str and then char. Unchecked because we know
// that we are on a valid boundary. There's probably a quicker way..
// To check that bounds detection works even on exotic characters, there's a test included
// at the end of the file.
let next_char = unsafe { self.str.get_unchecked(self.cursor..next_char_boundary) }
.chars()
.next()
.unwrap();
self.cursor = next_char_boundary;
Some(next_char)
}
fn location(&self) -> Self::Location {
StrTokensLocation(self.cursor)
}
fn set_location(&mut self, location: Self::Location) {
self.cursor = location.0;
}
fn is_at_location(&self, location: &Self::Location) -> bool {
self.cursor == location.0
}
}
impl<'a> IntoTokens<char> for StrTokens<'a> {
type Tokens = Self;
fn into_tokens(self) -> Self {
self
}
}
impl<'a> IntoTokens<char> for &'a str {
type Tokens = StrTokens<'a>;
fn into_tokens(self) -> Self::Tokens {
StrTokens {
str: self,
cursor: 0,
}
}
}
/// This is what we are given back if we call [`IterTokens::into_tokens(iter)`] on
/// an `impl Iterator + Clone`. It implements the [`Tokens`] interface.
#[derive(Clone)]
pub struct IterTokens<I> {
iter: I,
cursor: usize,
}
/// This implements [`TokenLocation`] and stores the location and state of
/// our current cursor into some iterator. The location is equivalent to `offset`
/// in [`Iterator::nth(offset)`].
#[derive(Clone)]
pub struct IterTokensLocation<I>(IterTokens<I>);
impl<I> core::fmt::Debug for IterTokensLocation<I> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "IterTokensLocation(cursor = {})", self.0.cursor)
}
}
// Locations match as long as the cursors do. This is as strong as the guarantee
// for string or slice locations, and in all cases, locations from StrTokens/SliceTokens
// may be equal even if the underlying tokens are different.
impl<I> PartialEq for IterTokensLocation<I> {
fn eq(&self, other: &Self) -> bool {
self.0.cursor == other.0.cursor
}
}
impl<I> TokenLocation for IterTokensLocation<I> {
fn offset(&self) -> usize {
self.0.cursor
}
}
impl<I: Iterator + Clone> IterTokens<I> {
/// We can't define a blanket impl for [`IntoTokens`] on all `impl Iterator + Clone` without
/// [specialization](https://rust-lang.github.io/rfcs/1210-impl-specialization.html).
///
/// Instead, use this method to convert a suitable iterator into [`Tokens`].
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, types::IterTokens };
///
/// // In normal usage, "hello \n\t world".into_tokens()
/// // would be preferred here (which would give StrTokens).
/// // This is just to demonstrate using IterTokens:
/// let chars_iter = "hello \n\t world".chars();
/// let mut tokens = IterTokens::into_tokens(chars_iter);
///
/// // now we have tokens, we can do some parsing:
/// assert!(tokens.tokens("hello".chars()));
/// tokens.skip_tokens_while(|c| c.is_whitespace());
/// assert!(tokens.tokens("world".chars()));
/// ```
pub fn into_tokens(iter: I) -> Self {
IterTokens { iter, cursor: 0 }
}
}
impl<I> Tokens for IterTokens<I>
where
I: Iterator + Clone,
{
type Item = I::Item;
type Location = IterTokensLocation<I>;
fn next(&mut self) -> Option<Self::Item> {
self.cursor += 1;
self.iter.next()
}
fn location(&self) -> Self::Location {
IterTokensLocation(self.clone())
}
fn set_location(&mut self, location: Self::Location) {
*self = location.0;
}
fn is_at_location(&self, location: &Self::Location) -> bool {
self.cursor == location.0.cursor
}
}
impl<I> IntoTokens<I::Item> for IterTokens<I>
where
I: Iterator + Clone,
{
type Tokens = Self;
fn into_tokens(self) -> Self {
self
}
}
/// Embed some context with your [`Tokens`] implementation to
/// access at any time. Use [`Tokens::with_context`] to produce this.
pub struct WithContext<T, C> {
tokens: T,
context: C,
}
/// Embed some context with a mutable reference to your [`Tokens`] to
/// access at any time. Use [`Tokens::with_context`] to produce this.
pub struct WithContextMut<T, C> {
tokens: T,
context: C,
}
// `WithContext` and `WithContextMut` have almost identical looking impls,
// but one only works with `Tokens`, and one with `&mut Tokens` (because
// those impls would conflict if both on the same struct).
macro_rules! with_context_impls {
($name:ident $( $($mut:tt)+ )?) => {
impl <T, C> $name<T, C> {
/// Provide something that implements [`Tokens`] and
/// some arbitrary context.
pub(crate) fn new(tokens: T, context: C) -> Self {
Self { tokens, context }
}
/// Return the original tokens and context
pub fn into_parts(self) -> (T, C) {
(self.tokens, self.context)
}
/// Access the context
pub fn context(&self) -> &C {
&self.context
}
/// Mutably access the context
pub fn context_mut(&mut self) -> &mut C {
&mut self.context
}
}
impl <T, C> Tokens for $name<$( $($mut)+ )? T, C>
where T: Tokens {
type Item = T::Item;
type Location = T::Location;
fn next(&mut self) -> Option<Self::Item> {
self.tokens.next()
}
fn location(&self) -> Self::Location {
self.tokens.location()
}
fn set_location(&mut self, location: Self::Location) {
self.tokens.set_location(location)
}
fn is_at_location(&self, location: &Self::Location) -> bool {
self.tokens.is_at_location(location)
}
}
}
}
with_context_impls!(WithContext);
with_context_impls!(WithContextMut &mut);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn exotic_character_bounds() {
let mut tokens = "🗻∈🌏".into_tokens();
assert_eq!(tokens.next(), Some('🗻'));
assert_eq!(tokens.next(), Some('∈'));
assert_eq!(tokens.next(), Some('🌏'));
}
#[test]
fn iterator_tokens_sanity_check() {
// In reality, one should always prefer to use StrTokens for strings:
let chars = "hello \n\t world".chars();
let mut tokens = IterTokens::into_tokens(chars);
let loc = tokens.location();
assert!(tokens.tokens("hello".chars()));
tokens.set_location(loc.clone());
assert!(tokens.tokens("hello".chars()));
tokens.skip_tokens_while(|c| c.is_whitespace());
assert!(tokens.tokens("world".chars()));
tokens.set_location(loc);
assert!(tokens.tokens("hello".chars()));
}
}