1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
use std::collections::{HashMap, HashSet};
use std::cmp::{min, max};
use std::iter::FromIterator;
use stats::{stddev, mean, median};

mod levenshtein;
mod preprocessor;
mod stopwords;

type Sentences = Vec<Sentence>;
type Candidates = HashMap<String, PreCandidate>;
type Features =  HashMap<String, YakeCandidate>;
type Words = HashMap<String, Vec<Occurrence>>;
type Contexts = HashMap<String, (Vec<String>, Vec<String>)>;
type DedupeSubgram = HashMap<String, bool>;





#[derive(PartialEq, Eq, Hash, Debug)]
struct Occurrence {
    pub shift_offset: usize,
    pub shift: usize,
    pub index: usize,
    pub word: String,
}

#[derive(Debug, Default)]
struct YakeCandidate {
    isstop: bool,
    tf: f64,
    tf_a: f64,
    tf_u: f64,
    casing: f64,
    position: f64, 
    frequency: f64,
    wl: f64,
    wr: f64,
    pl: f64,
    pr: f64,
    different: f64,
    relatedness: f64,
    weight: f64,
    
}

#[derive(PartialEq, Clone, Debug)]
pub struct ResultItem {
    raw: String,
    keyword: String,
    score: f64,
}
impl ResultItem {
    fn new(raw: String, keyword: String, score: f64) -> ResultItem {
        ResultItem {
            raw,
            keyword,
            score,
        }
    }
}

#[derive(Debug, Clone)]
struct Sentence {
    pub words: Vec<String>,
    pub stems: Vec<String>,
    pub length: usize,
}
impl Sentence {
    pub fn new(words: Vec<String>, stems:Option<Vec<String>>) -> Sentence {
        let length = words.len();
        let default_stems = stems.unwrap_or(Vec::<String>::new());
        Sentence {
            words,
            length,
            stems: default_stems,
        }
    }
}

#[derive(PartialEq, Eq, Clone, Debug)]
struct PreCandidate {
    pub surface_forms: Vec<Vec<String>>,
    pub lexical_form: Vec<String>,
    pub offsets: Vec<usize>,
    pub sentence_ids: Vec<usize>,
}


#[derive(Debug, Clone)]
struct Config {
    pub ngram: usize,
    pub punctuation: HashSet<String>,
    pub stopwords: HashSet<String>,
    pub remove_duplicates: bool,

    window_size: usize,
    dedupe_lim: f64,
}


#[derive(Debug, Clone)]
pub struct Yake {
    config: Config,
}


impl Yake {
    pub fn new(ngram: Option<usize>, remove_duplicates: Option<bool>) -> Yake {
        let default_stopwords = stopwords::StopWords::new().words;
        let default_punctuation = HashSet::from_iter( vec!["!", "\"", "#", "$", "%", "&", "'", "(", ")", "*", "+", ",", "-", ".", "/", ":", ",", "<", "=", ">", "?", "@", "[", "\\", "]", "^", "_", "`", "{", "|", "}", "~"].iter().map(|&s| s.to_string()));
        let default_ngram = ngram.unwrap_or(3);
        let default_remove_duplicates = remove_duplicates.unwrap_or(true);
        Yake {
            config: Config {
                window_size: 2,
                ngram: default_ngram,
                dedupe_lim: 0.8,
                stopwords: default_stopwords,
                punctuation: default_punctuation,
                remove_duplicates: default_remove_duplicates,
            },
        }
    }

    pub fn get_n_best(&mut self, text: String, n: Option<usize>) -> Vec<ResultItem> {
        let default_n = n.unwrap_or(10);
        let sentences = self.build_text(text);
        let selected_ngrams = self.ngram_selection(self.config.ngram, sentences);
        let filtered_candidates = self.candidate_filtering(selected_ngrams.0, None, None, None, None, None);
        let selected_candidates = self.candidate_selection(filtered_candidates);
        let built_words = self.vocabulary_building(selected_ngrams.1);
        let built_contexts = self.context_building(built_words.0, built_words.1);
        let built_features = self.feature_extraction(built_contexts.0, built_contexts.1, built_contexts.2);
        let weighted_candidates = self.candidate_weighting(built_features.0, built_features.1, selected_candidates.0, selected_candidates.1);

        let mut results_vec = weighted_candidates.0.clone().iter().map(|(k, v)| ResultItem::new(weighted_candidates.4.get(&k.to_string()).unwrap().to_string(),   k.to_string(), *v)).collect::<Vec<ResultItem>>();
        results_vec.sort_by(|a, b| a.score.partial_cmp(&b.score).unwrap());

        if self.config.remove_duplicates {
            let mut non_redundant_best = Vec::<ResultItem>::new();
            for candidate in results_vec {
                if self.is_redundant(candidate.clone().keyword, non_redundant_best.iter().map(|x| x.keyword.to_string()).collect::<Vec<String>>()) {
                    continue;
                }
                non_redundant_best.push(candidate);

                if non_redundant_best.len() >= default_n {
                    break;
                }
            }
            results_vec = non_redundant_best;
        }

        results_vec.iter().take(min(default_n, results_vec.len())).map(|x| ResultItem { raw: x.raw.to_owned(), keyword: x.keyword.to_owned(), score: x.score }).collect::<Vec<ResultItem>>()
    }
    

    fn build_text(&mut self, text: String) -> Sentences {
        let mut sentences = Vec::<Sentence>::new();
        let preprocessor = preprocessor::Preprocessor::new(text, None, None).split_into_sentences();
        for sentence in preprocessor {
            let words = preprocessor::Preprocessor::new(sentence.to_string(), None, None).split_into_words();
            let stems = words.iter().map(|w| w.to_lowercase()).collect::<Vec<String>>();
            let sentence = Sentence::new(words, Some(stems));
            sentences.push(sentence);
        }
        sentences
    }

    fn candidate_selection(&mut self, mut candidates: HashMap<String, PreCandidate>) -> (HashMap<String, PreCandidate>, HashMap<String, bool>) {
        let mut dedupe_subgrams = HashMap::<String, bool>::new();
        for (k, v) in candidates.clone() {
            if  self.config.stopwords.contains(&v.surface_forms[0][0].to_lowercase()) ||
                self.config.stopwords.contains(&v.surface_forms[0].last().unwrap().to_lowercase()) || 
                v.surface_forms[0][0].len() < 3 ||
                v.surface_forms[0].last().unwrap().len() < 3 
            {
                candidates.remove(&k);
            }
            if v.surface_forms[0].len() > 1 {
                for sf in v.surface_forms[0].clone() {
                    dedupe_subgrams.insert(sf.to_string().to_lowercase(), true);
                }
            }
        }

        (candidates, dedupe_subgrams)
    }

    fn vocabulary_building(&mut self, sentences: Vec<Sentence>) -> (Words, Sentences) {
        let mut words = HashMap::<String, Vec<Occurrence>>::new();
        for (idx, sentence) in sentences.clone().iter().enumerate() {
            let shift = sentences[0..idx].iter().map(|s| s.length).sum::<usize>(); 

            for (w_idx, word) in sentence.words.iter().enumerate() {
                if self.is_alphanum(word.to_string(), None) && HashSet::from_iter(word.split("").map(|x| x.to_string() )).intersection(&self.config.punctuation).count() == 0 {
                    let index = word.to_lowercase();
                    let new_occurrence = Occurrence {
                        shift_offset: shift + w_idx,
                        index: idx,
                        word: word.to_string(),
                        shift
                    };
                    
                    let object = words.get_mut(&index);
                    if object != None {
                        object.unwrap().push(new_occurrence)
                    } else {
                        words.insert( index, vec![new_occurrence]);
                    }
                }
            }
        }

        (words, sentences)
    }

    fn context_building(&mut self, words: Words, sentences: Sentences) -> (Contexts, Words, Sentences) {
        let cloned_sentences = sentences.clone();
        let mut contexts = Contexts::new();
        for sentence in cloned_sentences {
            let words = sentence.words.iter().map(|w| w.to_lowercase()).collect::<Vec<String>>();
            let mut buffer = Vec::<String>::new();
            for (_j, word) in words.iter().enumerate() {
                if !words.contains(word) {
                    buffer.clear();
                    continue;
                }

                let min_range = max(0 as i32, buffer.len() as i32 - self.config.window_size as i32);
                let max_range = buffer.len();
                let buffered_words = &buffer[(min_range as usize)..max_range as usize];
                for w in buffered_words {
                    let entry_1 = contexts.entry(word.to_string()).or_insert((
                        vec![w.to_string()],
                        Vec::<String>::new(),
                    ));
                    entry_1.0.push(w.to_string());
                    let entry_2 = contexts.entry(w.to_string()).or_insert((
                        Vec::<String>::new(),
                        vec![word.to_string()],
                    ));
                    entry_2.1.push(word.to_string());
                }
                buffer.push(word.to_string());
            }
        }

        (contexts, words, sentences)
    }

    fn feature_extraction(&mut self, contexts: Contexts, words: Words, sentences: Sentences) -> (Features, Contexts, Words, Sentences) {
        let tf = words.iter().map(|(_k,v)| v.len() ).collect::<Vec<usize>>();
        let tf_nsw = words.iter().filter_map(|(k,v)| {
            if !self.config.stopwords.contains(&k.to_owned()) {
                Some(v.len())
            } else {
                None
            }
        }).collect::<Vec<usize>>();

        let std_tf = stddev(tf_nsw.iter().map(|x| *x as f64));
        let mean_tf = mean(tf_nsw.iter().map(|x| *x as f64));
        let max_tf = *tf.iter().max().unwrap() as f64;

        let mut features = Features::new();
        for (key, ref word) in &words {

            let mut cand = YakeCandidate::default();
            cand.isstop = self.config.stopwords.contains(key) || key.len() < 3;
            cand.tf =  word.len() as f64;
            cand.tf_a = 0.0;
            cand.tf_u = 0.0;
            for occurrence in word.clone() {
                if occurrence.word.chars().all(|c| c.is_uppercase()) && occurrence.word.len() > 1 {
                     cand.tf_a += 1.0;
                }
                if occurrence.word.chars().nth(0).unwrap_or(' ').is_uppercase() && occurrence.shift != occurrence.shift_offset {
                    cand.tf_u += 1.0;
                }
            }

            cand.casing = cand.tf_a.max(cand.tf_u);
            cand.casing /= 1.0 + cand.tf.ln_1p();

            let sentence_ids = word.iter().map(|o| o.index).collect::<HashSet<usize>>();
            cand.position = (3.0 + median(sentence_ids.iter().map(|x| *x)).unwrap()).ln();
            cand.position = cand.position.ln();

            cand.frequency = cand.tf;
            cand.frequency /= mean_tf + std_tf;

            cand.wl = 0.0;

            let ctx = contexts.get(key).unwrap();
            let ctx_1_hash: HashSet<String> = HashSet::from_iter(ctx.clone().0);
            if ctx.0.len() > 0 {
                cand.wl = ctx_1_hash.len() as f64;
                cand.wl /=  ctx.0.len() as f64;
            }
            cand.pl = ctx_1_hash.len() as f64 / max_tf;

            cand.wr = 0.0;
            let ctx_2_hash: HashSet<String> = HashSet::from_iter(ctx.clone().1);
            if ctx.1.len() > 0 {
                cand.wr = ctx_2_hash.len() as f64;
                cand.wr /= ctx.1.len() as f64;
            }
            cand.pr = ctx_2_hash.len() as f64 / max_tf;

            cand.relatedness = 1.0;
            cand.relatedness += (cand.wr + cand.wl) * (cand.tf / max_tf);

            cand.different = sentence_ids.len() as f64;
            cand.different /= sentences.len() as f64;
            cand.weight = (cand.relatedness * cand.position) / (cand.casing + (cand.frequency / cand.relatedness) + ( cand.different / cand.relatedness));
        
            features.insert(key.to_string(), cand);
        }

        (features, contexts, words, sentences )
    }

    fn candidate_weighting(&mut self, features: Features, contexts: Contexts, candidates: Candidates, dedupe_subgram: DedupeSubgram) -> (HashMap<String, f64>,  HashMap<String, String>, HashMap<String, (Vec<String>, Vec<String>)>, HashMap<String, PreCandidate>, HashMap<String,String>) {
        let mut final_weights = HashMap::<String, f64>::new();
        let mut surface_to_lexical = HashMap::<String, String>::new();
        let mut raw_lookup = HashMap::<String, String>::new();

        for (_k, v) in candidates.clone() {
                let lowercase_forms = v.surface_forms.iter().map(|w| w.join(" ").to_lowercase());
                for (idx, candidate) in lowercase_forms.clone().enumerate() {
                    let tf = lowercase_forms.clone().count() as f64;
                    let tokens = v.surface_forms[idx].iter().clone().map(|w| w.to_lowercase());
                    let mut prod_ = 1.0;
                    let mut sum_ = 0.0;

                    // Dedup Subgram; Penalize subgrams
                    if dedupe_subgram.contains_key(&candidate) {
                        prod_ += 5.0;
                    }

                    for (j, token) in tokens.clone().enumerate() {
                        let cand_value = match features.get_key_value(&token) {
                            Some(b) => b,
                            None => continue,
                        };
                        if cand_value.1.isstop  {
                            let term_stop = token;
                            let mut prob_t1 = 0.0;
                            let mut prob_t2 = 0.0;
                            if j - 1 > 0 {
                                let term_left = tokens.clone().nth(j-1).unwrap();
                                prob_t1 = contexts.get(&term_left).unwrap().1.iter().filter(|w| **w == term_stop).count() as f64 / features.get(&term_left).unwrap().tf;
                            }
                            if j + 1 < tokens.len() {
                                let term_right = tokens.clone().nth(j+1).unwrap();
                                prob_t2 = contexts.get(&term_stop).unwrap().0.iter().filter(|w| **w == term_right).count() as f64 / features.get(&term_right).unwrap().tf;
                            }

                            let prob = prob_t1 * prob_t2;
                            prod_ *= 1.0 + (1.0 - prob );
                            sum_ -= 1.0 - prob;
                        } else {
                            prod_ *= cand_value.1.weight;
                            sum_  += cand_value.1.weight;
                        }
                    }
                    if sum_ == -1.0 {
                        sum_ = 0.999999999;
                    }
                    let weight = prod_ / tf * (1.0 + sum_);

                  
                    final_weights.insert(candidate.to_string(), weight);
                    surface_to_lexical.insert(candidate.to_string(), v.lexical_form.join(" "));
                    raw_lookup.insert(candidate.to_string(), v.surface_forms[0].join(" ").clone());
                } 
        }

        (final_weights, surface_to_lexical, contexts, candidates, raw_lookup)
    }

    fn is_redundant(&mut self, cand: String, prev: Vec<String>) -> bool {
        for prev_cand in prev {
            let dist = levenshtein::Levenshtein::ratio(cand.to_owned(), prev_cand);
            if dist > self.config.dedupe_lim {
                return true;
            }
        }

        false
    }

    fn is_alphanum(&mut self, mut word: String, valid_punctuation_marks: Option<String>) -> bool {
        let default_valid_punctuation_marks = valid_punctuation_marks.unwrap_or("-".to_owned());
        for punct in default_valid_punctuation_marks.split("") {
            word = word.replace(punct, "");
        }
        word.chars().all(|c| c.is_alphanumeric())
    }

    fn candidate_filtering(&mut self, mut candidates: Candidates ,minimum_length: Option<usize>, minimum_word_size: Option<usize>, valid_punctuation_marks: Option<String>, maximum_word_number: Option<usize>, only_alphanum: Option<bool>) -> Candidates {
        let default_minimum_length = minimum_length.unwrap_or(3);
        let default_minimum_word_size = minimum_word_size.unwrap_or(2);
        let default_maximum_word_number = maximum_word_number.unwrap_or(5);
        let default_only_alphanum = only_alphanum.unwrap_or(false);
        let default_valid_punctuation_marks = valid_punctuation_marks.unwrap_or("-".to_owned());


        for (k, v) in candidates.clone() {
            //get the words from the first occurring surface form
            let words = HashSet::from_iter(v.surface_forms[0].iter().map(|w| w.to_lowercase()));
            if words.intersection(&self.config.stopwords).count() > 0 {
                candidates.remove_entry(&k);
            }
            if words.clone().iter().any(|w| w.parse::<f64>().is_ok()) {
                candidates.remove_entry(&k);
            }
            if words.clone().iter().any(|w| HashSet::from_iter(vec![w.to_owned()]).is_subset(&self.config.punctuation)) {
                candidates.remove_entry(&k);
            }
            if words.clone().iter().map(|w| w.to_owned()).collect::<Vec<String>>().join("").len() < default_minimum_length {
                candidates.remove_entry(&k);
            }; 
            if words.clone().iter().map(|w| w.len()).min().unwrap() < default_minimum_word_size {
                candidates.remove_entry(&k);
            }
            if v.lexical_form.len() > default_maximum_word_number {
                candidates.remove_entry(&k);
            } 
            if default_only_alphanum && candidates.contains_key(&k) {
                if words.clone().iter().any(|w| !self.is_alphanum(w.to_owned(), Some(default_valid_punctuation_marks.to_owned()))) {
                    candidates.remove_entry(&k);
                }
            }
        }

        candidates
    }

    fn ngram_selection(&mut self, n: usize, sentences: Sentences) -> (Candidates, Sentences)  {
        let mut candidates = HashMap::<String, PreCandidate>::new();
        for (idx, sentence) in sentences.iter().enumerate() {
            let skip = min(n, sentence.length);
            let shift = sentences[0..idx].iter().map(|s| s.length).sum::<usize>();

            for j in 0..sentence.length {
                for k in j+1..min(j + 1 + skip, sentence.length + 1) {

                    let words = sentence.words[j..k].to_vec();                
                    let stems = sentence.stems[j..k].to_vec();
                    let sentence_id = idx;
                    let offset = j + shift;
                    let lexical_form = stems.join(" ");
                    let candidate = candidates.get_mut(lexical_form.as_str());
                    if candidate.is_none() {
                        candidates.insert(lexical_form.clone(), PreCandidate {
                            lexical_form: stems,
                            surface_forms: vec![words],
                            sentence_ids: vec![sentence_id],
                            offsets: vec![offset],
                        });
                    } else {
                        let candidate = candidate.unwrap();
                        candidate.surface_forms.push(words);
                        candidate.sentence_ids.push(sentence_id);
                        candidate.offsets.push(offset);
                        candidate.lexical_form = stems;
                    }
                }
            }
        }
        (candidates, sentences)
    }
    
}

#[cfg(test)]
mod tests {
    type Results = Vec<ResultItem>;
    use crate::ResultItem;

    fn keywords() {
        let text = r#"
        Google is acquiring data science community Kaggle. Sources tell us that Google is acquiring Kaggle, a platform that hosts data science and machine learning 
        competitions. Details about the transaction remain somewhat vague, but given that Google is hosting its Cloud 
        Next conference in San Francisco this week, the official announcement could come as early as tomorrow. 
        Reached by phone, Kaggle co-founder CEO Anthony Goldbloom declined to deny that the acquisition is happening. 
        Google itself declined 'to comment on rumors'. Kaggle, which has about half a million data scientists on its platform, 
        was founded by Goldbloom  and Ben Hamner in 2010. 
        The service got an early start and even though it has a few competitors like DrivenData, TopCoder and HackerRank, 
        it has managed to stay well ahead of them by focusing on its specific niche. 
        The service is basically the de facto home for running data science and machine learning competitions. 
        With Kaggle, Google is buying one of the largest and most active communities for data scientists - and with that, 
        it will get increased mindshare in this community, too (though it already has plenty of that thanks to Tensorflow 
        and other projects). Kaggle has a bit of a history with Google, too, but that's pretty recent. Earlier this month, 
        Google and Kaggle teamed up to host a $100,000 machine learning competition around classifying YouTube videos. 
        That competition had some deep integrations with the Google Cloud Platform, too. Our understanding is that Google 
        will keep the service running - likely under its current name. While the acquisition is probably more about 
        Kaggle's community than technology, Kaggle did build some interesting tools for hosting its competition 
        and 'kernels', too. On Kaggle, kernels are basically the source code for analyzing data sets and developers can 
        share this code on the platform (the company previously called them 'scripts'). 
        Like similar competition-centric sites, Kaggle also runs a job board, too. It's unclear what Google will do with 
        that part of the service. According to Crunchbase, Kaggle raised $12.5 million (though PitchBook says it's $12.75) 
        since its   launch in 2010. Investors in Kaggle include Index Ventures, SV Angel, Max Levchin, Naval Ravikant,
        Google chief economist Hal Varian, Khosla Ventures and Yuri Milner 
        "#;
    
        let kwds = super::Yake::new(None, None).get_n_best(text.to_string(), Some(10));
        let results: Results = vec![
            ResultItem{
                raw: "Kaggle".to_owned(),
                keyword: "kaggle".to_owned(),
                score: 0.20846279315962324
              },
              ResultItem{
                raw: "Google".to_owned(),
                keyword: "google".to_owned(),
                score: 0.23676437642810488
              },
              ResultItem{
                raw: "acquiring Kaggle".to_owned(),
                keyword: "acquiring kaggle".to_owned(),
                score: 0.3017882425537463
              },
              ResultItem{
                raw: "data science".to_owned(),
                keyword: "data science".to_owned(),
                score: 0.30873986543219967
              },
              ResultItem{
                raw: "Google Cloud".to_owned(),
                keyword: "google cloud".to_owned(),
                score: 0.40955463454967833
              },
              ResultItem{
                raw: "Google Cloud Platform".to_owned(),
                keyword: "google cloud platform".to_owned(),
                score: 0.5018536215405839
              },
              ResultItem{
                raw: "acquiring data science".to_owned(),
                keyword: "acquiring data science".to_owned(),
                score: 0.5494143207629893
              },
              ResultItem{
                raw: "San Francisco".to_owned(),
                keyword: "san francisco".to_owned(),
                score: 0.7636151899513093
              },
              ResultItem{
                raw: "CEO Anthony Goldbloom".to_owned(),
                keyword: "ceo anthony goldbloom".to_owned(),
                score: 0.8166005339007906
              },
              ResultItem{
                raw: "science community Kaggle".to_owned(),
                keyword: "science community kaggle".to_owned(),
                score: 0.8690005548383123
              }
        ];

        assert_eq!(kwds, results);
    }

}