ya_rand/
rng.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
const F64_MANT: u32 = f64::MANTISSA_DIGITS;
const F32_MANT: u32 = f32::MANTISSA_DIGITS;
const F64_MAX_PRECISE: u64 = 1 << F64_MANT;
const F32_MAX_PRECISE: u64 = 1 << F32_MANT;
const F64_DIVISOR: f64 = F64_MAX_PRECISE as f64;
const F32_DIVISOR: f32 = F32_MAX_PRECISE as f32;
const ASCII_CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";

#[cfg(feature = "secure")]
pub trait SecureGenerator {
    /// Fills `dest` with random data, which is safe to be used
    /// in cryptographic contexts.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// let mut rng = new_rng_secure();
    /// let mut data = [0; 1738];
    /// rng.fill_bytes(&mut data);
    /// assert!(data.into_iter().any(|v| v != 0));
    /// ```
    fn fill_bytes(&mut self, dest: &mut [u8]);
}

pub trait SeedableGenerator {
    /// Creates a generator from the output of an internal SplitMix64 generator,
    /// which is itself seeded using `seed`.
    ///
    /// As a rule: unless you are **absolutely certain** that you need to manually
    /// seed a generator, you don't.
    /// Instead, use [`crate::new_rng`] when you need to create a new instance.
    ///
    /// If you have a scenario where you really need a set seed, prefer to use the `Default`
    /// implementation of the desired generator.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// let mut rng1 = ShiroRng::new_with_seed(0);
    /// let mut rng2 = ShiroRng::default();
    /// // Default is just a shortcut for manually seeding with 0.
    /// assert!(rng1 == rng2);
    /// ```
    fn new_with_seed(seed: u64) -> Self;
}

pub trait Generator: Sized {
    /// Creates a generator using randomness provided by the OS.
    ///
    /// Unlike [`Generator::new`], which will panic on failure, `try_new`
    /// propagates the error-handling responsibility to the user. That being
    /// said, the probability of your operating systems RNG failing is absurdly
    /// low. And in the case that is does fail, that's not really an issue
    /// most users are going to be able to address.
    ///
    /// Stick to using [`crate::new_rng`], unless you **need** a generator of a
    /// different type (and you probably don't), then use `new` on your desired type.
    fn try_new() -> Result<Self, getrandom::Error>;

    /// Creates a generator using randomness provided by the OS.
    ///
    /// It is recommended to instead use the top-level [`crate::new_rng`] instead
    /// of calling this function on a specific generator type.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// // Recommended usage
    /// let mut rng1 = new_rng();
    /// // More explicit
    /// let mut rng2 = ShiroRng::new();
    /// // Even more explicit
    /// let mut rng3 = Xoshiro256pp::new();
    /// // Since these are all created using OS entropy, the odds of
    /// // their states colliding will be vanishingly small.
    /// assert!(rng1 != rng2);
    /// assert!(rng1 != rng3);
    /// assert!(rng2 != rng3);
    /// ```
    fn new() -> Self {
        Self::try_new().expect(
            "WARNING: retrieving random data from the operating system should never fail; \
            something has gone terribly wrong",
        )
    }

    /// Returns a uniformly distributed u64 in the interval [0, 2<sup>64</sup>).
    fn u64(&mut self) -> u64;

    /// Returns a uniformly distributed u32 in the interval [0, 2<sup>32</sup>).
    #[inline]
    fn u32(&mut self) -> u32 {
        self.bits(u32::BITS) as u32
    }

    /// Returns a uniformly distributed u16 in the interval [0, 2<sup>16</sup>).
    #[inline]
    fn u16(&mut self) -> u16 {
        self.bits(u16::BITS) as u16
    }

    /// Returns a uniformly distributed u8 in the interval [0, 2<sup>8</sup>).
    #[inline]
    fn u8(&mut self) -> u8 {
        self.bits(u8::BITS) as u8
    }

    /// Returns a uniformly distributed u64 in the interval [0, 2<sup>`bit_count`</sup>).
    #[inline]
    fn bits(&mut self, bit_count: u32) -> u64 {
        debug_assert!(bit_count <= u64::BITS);
        self.u64() >> (u64::BITS - bit_count)
    }

    /// Returns a bool with 50% odds of being true.
    ///
    /// A simple coinflip.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// const ITER_COUNT: u64 = 1 << 24;
    /// let mut rng = new_rng();
    /// let mut ones: u64 = 0;
    /// let mut zeroes: u64 = 0;
    /// for _ in 0..ITER_COUNT {
    ///     if rng.bool() {
    ///         ones += 1;
    ///     } else {
    ///         zeroes += 1;
    ///     }
    /// }
    /// // We expect the difference to be within ~5%.
    /// let THRESHOLD: u64 = ITER_COUNT / 20;
    /// assert!(ones.abs_diff(zeroes) <= THRESHOLD);
    /// ```
    #[inline]
    fn bool(&mut self) -> bool {
        // Compiles to a single "shr 63" instruction.
        self.bits(1) == 1
    }

    /// Returns a uniformly distributed u64 in the interval [0, `bound`).
    ///
    /// Using [`Generator::bits`] when `bound` happens to be a power of 2
    /// is faster and generates less assembly.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// let mut rng = new_rng();
    /// // Special case
    /// assert!(rng.bound(0) == 0);
    /// for i in 1..=4000 {
    ///     let iters = 64.max(i * 2);
    ///     for _ in 0..iters {
    ///         assert!(rng.bound(i) < i);
    ///     }
    /// }
    /// ```
    #[inline]
    fn bound(&mut self, bound: u64) -> u64 {
        use crate::util::wide_mul;
        let (mut high, mut low) = wide_mul(self.u64(), bound);
        // Will nearly always be false when `bound` isn't close to u64::MAX.
        match low < bound {
            false => {}
            true => {
                // Can actually be a pretty cheap failure branch, since
                // rustc can compute `threshold` at compile time when `bound`
                // is a constant.
                let threshold = bound.wrapping_neg() % bound;
                while low < threshold {
                    (high, low) = wide_mul(self.u64(), bound);
                }
            }
        }
        debug_assert!((bound != 0 && high < bound) || (high == 0));
        high
    }

    /// Returns a uniformly distributed u64 in the interval \[0, `bound`\].
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// let mut rng = new_rng();
    /// for i in 0..=4000 {
    ///     let iters = 64.max(i * 2);
    ///     for _ in 0..iters {
    ///         assert!(rng.bound_inclusive(i) <= i);
    ///     }
    /// }
    /// ```
    #[inline]
    fn bound_inclusive(&mut self, bound: u64) -> u64 {
        self.bound(bound + 1)
    }

    /// Returns a uniformly distributed i64 in the interval [`start`, `end`)
    #[inline]
    fn range(&mut self, start: i64, end: i64) -> i64 {
        let delta = end - start;
        debug_assert!(delta > 0);
        (self.bound(delta as u64) as i64) + start
    }

    /// Returns a uniformly distributed i64 in the interval \[`start`, `end`\]
    #[inline]
    fn range_inclusive(&mut self, start: i64, end: i64) -> i64 {
        self.range(start, end + 1)
    }

    /// Returns a uniformly distributed f64 in the interval [0.0, 1.0).
    #[inline]
    fn f64(&mut self) -> f64 {
        (self.bits(F64_MANT) as f64) / F64_DIVISOR
    }

    /// Returns a uniformly distributed f32 in the interval [0.0, 1.0).
    #[inline]
    fn f32(&mut self) -> f32 {
        (self.bits(F32_MANT) as f32) / F32_DIVISOR
    }

    /// Returns a uniformly distributed f64 in the interval (0.0, 1.0].
    #[inline]
    fn f64_nonzero(&mut self) -> f64 {
        // Interval of (0, 2^53]
        let nonzero = self.bits(F64_MANT) + 1;
        (nonzero as f64) / F64_DIVISOR
    }

    /// Returns a uniformly distributed f32 in the interval (0.0, 1.0].
    #[inline]
    fn f32_nonzero(&mut self) -> f32 {
        // Interval of (0, 2^24]
        let nonzero = self.bits(F32_MANT) + 1;
        (nonzero as f32) / F32_DIVISOR
    }

    /// Returns a uniformly distributed f64 in the interval (-1.0, 1.0).
    #[inline]
    fn f64_wide(&mut self) -> f64 {
        // This approach is faster than using Generator::range.
        const BITS: u32 = F64_MANT + 1;
        const OFFSET: i64 = F64_MAX_PRECISE as i64;
        let mut x: i64;
        loop {
            // Start with an interval of [0, 2^54)
            x = self.bits(BITS) as i64;
            // Interval is now (0, 2^54)
            match x != 0 {
                true => break,
                false => {}
            }
        }
        // Shift interval to (-2^53, 2^53)
        x -= OFFSET;
        (x as f64) / F64_DIVISOR
    }

    /// Returns a uniformly distributed f32 in the interval (-1.0, 1.0).
    #[inline]
    fn f32_wide(&mut self) -> f32 {
        // This approach is faster than using Generator::range.
        const BITS: u32 = F32_MANT + 1;
        const OFFSET: i64 = F32_MAX_PRECISE as i64;
        let mut x: i64;
        loop {
            // Start with an interval of [0, 2^25)
            x = self.bits(BITS) as i64;
            // Interval is now (0, 2^25)
            match x != 0 {
                true => break,
                false => {}
            }
        }
        // Shift interval to (-2^24, 2^24)
        x -= OFFSET;
        (x as f32) / F32_DIVISOR
    }

    /// Returns two indepedent and normally distributed f64 values with
    /// mean = 0 and stddev = 1.
    #[cfg(feature = "std")]
    #[inline]
    fn f64_normal(&mut self) -> (f64, f64) {
        // Marsaglia polar method.
        let mut x: f64;
        let mut y: f64;
        let mut s: f64;
        loop {
            x = self.f64_wide();
            y = self.f64_wide();
            s = (x * x) + (y * y);
            // Reroll if s does not lie within the unit circle
            match s < 1.0 && s != 0.0 {
                true => break,
                false => {}
            }
        }
        let t = (2.0 * s.ln().abs() / s).sqrt();
        (x * t, y * t)
    }

    /// Returns two indepedent and normally distributed f64 values with
    /// user-defined `mean` and `stddev`.
    #[cfg(feature = "std")]
    #[inline]
    fn f64_normal_distribution(&mut self, mean: f64, stddev: f64) -> (f64, f64) {
        debug_assert!(stddev != 0.0);
        let (x, y) = self.f64_normal();
        ((x * stddev) + mean, (y * stddev) + mean)
    }

    /// Returns an exponentially distributed f64 with lambda = 1.
    #[cfg(feature = "std")]
    #[inline]
    fn f64_exponential(&mut self) -> f64 {
        // Using abs() instead of negating the result of ln()
        // to avoid outputs of -0.0.
        self.f64_nonzero().ln().abs()
    }

    /// Returns an exponentially distributed f64 with user-defined `lambda`.
    #[cfg(feature = "std")]
    #[inline]
    fn f64_exponential_lambda(&mut self, lambda: f64) -> f64 {
        debug_assert!(lambda != 0.0);
        self.f64_exponential() / lambda
    }

    /// Returns a randomly chosen item from the iterator of `collection`.
    ///
    /// This method will only return `None` when the length of
    /// `collection` is zero.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// const SIZE: usize = 1738;
    /// const HALF: usize = SIZE / 2;
    /// let mut rng = new_rng();
    /// let mut v = [0; SIZE];
    /// for i in 0..SIZE {
    ///     v[i] = i;
    /// }
    ///
    /// let random_choice = rng.choose(&v).expect("Vector 'v' is not empty.");
    /// assert!(v.contains(random_choice));
    ///
    /// let random_choice = rng.choose(&v[HALF..]).expect("Still not empty.");
    /// assert!(v[HALF..].contains(random_choice) == true);
    ///
    /// // We randomly selected from the top half so we won't find
    /// // our value in the bottom half.
    /// assert!(v[..HALF].contains(random_choice) == false);
    /// ```
    #[inline]
    fn choose<C>(&mut self, collection: C) -> Option<C::Item>
    where
        C: IntoIterator,
        C::IntoIter: ExactSizeIterator,
    {
        let mut iter = collection.into_iter();
        let len = iter.len();
        if len == 0 {
            return None;
        }
        let idx = self.bound(len as u64) as usize;
        Some(unsafe { iter.nth(idx).unwrap_unchecked() })
    }

    /// Returns a randomly selected ASCII alphabetic character.
    #[inline]
    fn ascii_alphabetic(&mut self) -> char {
        unsafe { *self.choose(&ASCII_CHARS[..52]).unwrap_unchecked() as char }
    }

    /// Returns a randomly selected ASCII uppercase character.
    #[inline]
    fn ascii_uppercase(&mut self) -> char {
        unsafe { *self.choose(&ASCII_CHARS[..26]).unwrap_unchecked() as char }
    }

    /// Returns a randomly selected ASCII lowercase character.
    #[inline]
    fn ascii_lowercase(&mut self) -> char {
        unsafe { *self.choose(&ASCII_CHARS[26..52]).unwrap_unchecked() as char }
    }

    /// Returns a randomly selected ASCII alphanumeric character.
    #[inline]
    fn ascii_alphanumeric(&mut self) -> char {
        unsafe { *self.choose(&ASCII_CHARS[..]).unwrap_unchecked() as char }
    }

    /// Returns a randomly selected ASCII digit character.
    #[inline]
    fn ascii_digit(&mut self) -> char {
        unsafe { *self.choose(&ASCII_CHARS[52..]).unwrap_unchecked() as char }
    }

    /// Performs a Fisher-Yates shuffle on the contents of `slice`.
    ///
    /// This implementation is the modern variant introduced by Richard Durstenfeld.
    /// It is in-place and O(n). A slice pointer is used to avoid any bounds checks.
    ///
    /// # Examples
    ///
    /// ```
    /// use ya_rand::*;
    ///
    /// let mut rng = new_rng();
    /// let mut data = [0; 1738];
    /// for i in 0..data.len() {
    ///     data[i] = i;
    /// }
    /// assert!(data.is_sorted() == true);
    ///
    /// rng.shuffle(&mut data);
    /// assert!(data.is_sorted() == false);
    /// ```
    #[inline(never)]
    fn shuffle<T>(&mut self, slice: &mut [T]) {
        let slice_ptr = slice.as_mut_ptr();
        let mut j: usize;
        for i in (1..slice.len()).rev() {
            j = self.bound_inclusive(i as u64) as usize;
            // SAFETY: Index 'i' will always be in bounds because it's
            // bounded by slice length; index 'j' will always be
            // in bounds because it's bounded by 'i'.
            unsafe {
                core::ptr::swap(slice_ptr.add(i), slice_ptr.add(j));
            }
        }
    }
}