1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use core::{ptr, slice};
use crate::xxh32_common::*;
#[inline(always)]
fn read_le_unaligned(data: *const u8) -> u32 {
debug_assert!(!data.is_null());
unsafe {
ptr::read_unaligned(data as *const u32).to_le()
}
}
#[inline(always)]
fn read_le_aligned(data: *const u8) -> u32 {
debug_assert!(!data.is_null());
unsafe {
ptr::read(data as *const u32).to_le()
}
}
#[inline(always)]
fn read_le_is_align(data: *const u8, is_aligned: bool) -> u32 {
match is_aligned {
true => read_le_aligned(data),
false => read_le_unaligned(data)
}
}
fn finalize(mut input: u32, mut data: &[u8], is_aligned: bool) -> u32 {
while data.len() >= 4 {
input = input.wrapping_add(
read_le_is_align(data.as_ptr(), is_aligned).wrapping_mul(PRIME_3)
);
data = &data[4..];
input = input.rotate_left(17).wrapping_mul(PRIME_4);
}
for byte in data.iter() {
input = input.wrapping_add((*byte as u32).wrapping_mul(PRIME_5));
input = input.rotate_left(11).wrapping_mul(PRIME_1);
}
avalanche(input)
}
pub fn xxh32(mut input: &[u8], seed: u32) -> u32 {
let mut result = input.len() as u32;
if input.len() >= CHUNK_SIZE {
let mut v1 = seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2);
let mut v2 = seed.wrapping_add(PRIME_2);
let mut v3 = seed;
let mut v4 = seed.wrapping_sub(PRIME_1);
loop {
v1 = round(v1, read_le_unaligned(input.as_ptr()));
input = &input[4..];
v2 = round(v2, read_le_unaligned(input.as_ptr()));
input = &input[4..];
v3 = round(v3, read_le_unaligned(input.as_ptr()));
input = &input[4..];
v4 = round(v4, read_le_unaligned(input.as_ptr()));
input = &input[4..];
if input.len() < CHUNK_SIZE {
break;
}
}
result = result.wrapping_add(
v1.rotate_left(1).wrapping_add(
v2.rotate_left(7).wrapping_add(
v3.rotate_left(12).wrapping_add(
v4.rotate_left(18)
)
)
)
);
} else {
result = result.wrapping_add(seed.wrapping_add(PRIME_5));
}
return finalize(result, input, false);
}
pub struct Xxh32 {
total_len: u32,
is_large_len: bool,
v1: u32,
v2: u32,
v3: u32,
v4: u32,
mem: [u32; 4],
mem_size: u32,
}
impl Xxh32 {
#[inline]
pub const fn new(seed: u32) -> Self {
Self {
total_len: 0,
is_large_len: false,
v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
v2: seed.wrapping_add(PRIME_2),
v3: seed,
v4: seed.wrapping_sub(PRIME_1),
mem: [0, 0, 0, 0],
mem_size: 0,
}
}
pub fn update(&mut self, mut input: &[u8]) {
self.total_len = self.total_len.wrapping_add(input.len() as u32);
self.is_large_len |= (input.len() as u32 >= CHUNK_SIZE as u32) | (self.total_len >= CHUNK_SIZE as u32);
if (self.mem_size + input.len() as u32) < CHUNK_SIZE as u32 {
unsafe {
ptr::copy_nonoverlapping(input.as_ptr(), (self.mem.as_mut_ptr() as *mut u8).offset(self.mem_size as isize), input.len())
}
self.mem_size += input.len() as u32;
return
}
if self.mem_size > 0 {
let fill_len = CHUNK_SIZE - self.mem_size as usize;
unsafe {
ptr::copy_nonoverlapping(input.as_ptr(), (self.mem.as_mut_ptr() as *mut u8).offset(self.mem_size as isize), fill_len)
}
self.v1 = round(self.v1, self.mem[0].to_le());
self.v2 = round(self.v2, self.mem[1].to_le());
self.v3 = round(self.v3, self.mem[2].to_le());
self.v4 = round(self.v4, self.mem[3].to_le());
input = &input[fill_len..];
self.mem_size = 0;
}
if input.len() >= CHUNK_SIZE {
loop {
self.v1 = round(self.v1, read_le_unaligned(input.as_ptr()));
input = &input[4..];
self.v2 = round(self.v2, read_le_unaligned(input.as_ptr()));
input = &input[4..];
self.v3 = round(self.v3, read_le_unaligned(input.as_ptr()));
input = &input[4..];
self.v4 = round(self.v4, read_le_unaligned(input.as_ptr()));
input = &input[4..];
if input.len() < CHUNK_SIZE {
break;
}
}
}
if input.len() > 0 {
unsafe {
ptr::copy_nonoverlapping(input.as_ptr(), self.mem.as_mut_ptr() as *mut u8, input.len())
}
self.mem_size = input.len() as u32;
}
}
pub fn digest(&self) -> u32 {
let mut result = self.total_len;
if self.is_large_len {
result = result.wrapping_add(
self.v1.rotate_left(1).wrapping_add(
self.v2.rotate_left(7).wrapping_add(
self.v3.rotate_left(12).wrapping_add(
self.v4.rotate_left(18)
)
)
)
);
} else {
result = result.wrapping_add(self.v3.wrapping_add(PRIME_5));
}
let input = unsafe {
slice::from_raw_parts(self.mem.as_ptr() as *const u8, self.mem_size as usize)
};
return finalize(result, input, true);
}
#[inline]
pub fn reset(&mut self, seed: u32) {
self.total_len = 0;
self.is_large_len = false;
self.v1 = seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2);
self.v2 = seed.wrapping_add(PRIME_2);
self.v3 = seed;
self.v4 = seed.wrapping_sub(PRIME_1);
self.mem_size = 0;
}
}