hyp1f0

Function hyp1f0 

Source
pub fn hyp1f0<T: HypergeometricArg>(a: f64, z: T) -> T
Expand description

Hypergeometric function $_1F_0\left[a\middle| z\right]$ for real or complex $z$

This function is currently not implemented in SciPy, but is straightforward to evaluate. Both f64 and num_complex::Complex<f64> are accepted for z.

§Notes

This function is defined as

$$ _1F_0\left[a\middle| z\right] = \sum_{n=0}^\infty \rpow a n {z^n \over n!} $$

Here $\rpow \square n$ is the rising factorial; see pow_rising. It’s also equal to $(1 - z)^{-a}$.

§See also

  • hyp0f0: Hypergeometric function $_0F_0\left[\middle| z\right]$
  • hyp0f1: Confluent hypergeometric limit function, $_0F_1\left[b\middle| z\right]$
  • hyp1f1: Kummer’s confluent hypergeometric function, $\hyp 1 1 a b z$
  • hyp2f1: Gauss’ hypergeometric function, $\hyp 2 1 {a_1\enspace a_2} b z$