Expand description
Bindings to the scipy/xsf C++ library that powers
scipy.special.
See the scipy.special documentation
for additional information.
§Airy functions
| Function | Description |
|---|---|
airy | Airy functions and derivatives |
airy_scaled | Exponentially scaled Airy functions and derivatives |
airy_ai_zeros | Zeros and values of the Airy function Ai and its derivative |
airy_bi_zeros | Zeros and values of the Airy function Bi and its derivative |
airy_integrals | Integrals of Airy functions |
§Elliptic functions and integrals
| Function | Description |
|---|---|
ellipj | Jacobian elliptic functions |
ellipk | Complete elliptic integral of the first kind |
ellipkm1 | Complete elliptic integral of the first kind around $m = 1$ |
ellipkinc | Incomplete elliptic integral of the first kind |
ellipe | Complete elliptic integral of the second kind |
ellipeinc | Incomplete elliptic integral of the second kind |
§Bessel functions
| Function | Description |
|---|---|
bessel_j | Bessel function of the first kind, $J_v(z)$ |
bessel_je | Exponentially scaled Bessel function of the first kind |
bessel_y | Bessel function of the second kind, $Y_v(z)$ |
bessel_ye | Exponentially scaled Bessel function of the second kind |
bessel_i | Modified Bessel function of the first kind, $I_v(z)$ |
bessel_ie | Exponentially scaled modified Bessel function of the first kind |
bessel_k | Modified Bessel function of the second kind, $K_v(z)$ |
bessel_ke | Exponentially scaled modified Bessel function of the second kind |
hankel_1 | Hankel function of the first kind, $H_v^{(1)}(z)$ |
hankel_1e | Exponentially scaled Hankel function of the first kind |
hankel_2 | Hankel function of the second kind, $H_v^{(2)}(z)$ |
hankel_2e | Exponentially scaled Hankel function of the second kind |
wright_bessel | Wright’s generalized Bessel function |
log_wright_bessel | Natural logarithm of Wright’s generalized Bessel function |
jahnke_emden_lambda | Jahnke-Emden Lambda function $\Lambda_{\nu}(x)$ and derivatives |
§Zeros of Bessel functions
| Function | Description |
|---|---|
bessel_zeros | Zeros of Bessel functions $J_v(x)$, $J_v'(x)$, $Y_v(x)$, and $Y_v'(x)$ |
§Faster versions of common Bessel functions
| Function | Description |
|---|---|
bessel_j0 | Bessel function of the first kind of order 0, $J_0(x)$ |
bessel_j1 | Bessel function of the first kind of order 1, $J_1(x)$ |
bessel_y0 | Bessel function of the second kind of order 0, $Y_0(x)$ |
bessel_y1 | Bessel function of the second kind of order 1, $Y_1(x)$ |
bessel_i0 | Modified Bessel function of the first kind of order 0, $I_0(x)$ |
bessel_i0e | Exponentially scaled modified Bessel function of the first kind of order 0 |
bessel_i1 | Modified Bessel function of the first kind of order 1, $I_1(x)$ |
bessel_i1e | Exponentially scaled modified Bessel function of the first kind of order 1 |
bessel_k0 | Modified Bessel function of the second kind of order 0, $K_0(x)$ |
bessel_k0e | Exponentially scaled modified Bessel function of the second kind of order 0 |
bessel_k1 | Modified Bessel function of the second kind of order 1, $K_1(x)$ |
bessel_k1e | Exponentially scaled modified Bessel function of the second kind of order 1 |
§Integrals of Bessel functions
| Function | Description |
|---|---|
it1j0y0 | Integral of Bessel functions of the first kind of order 0 |
it2j0y0 | Integral related to Bessel functions of the first kind of order 0 |
it1i0k0 | Integral of modified Bessel functions of the second kind of order 0 |
it2i0k0 | Integral related to modified Bessel functions of the second kind of order 0 |
besselpoly | Weighted integral of the Bessel function of the first kind |
§Derivatives of Bessel functions
| Function | Description |
|---|---|
bessel_j_prime | $n$-th derivative of bessel_j |
bessel_y_prime | $n$-th derivative of bessel_y |
bessel_i_prime | $n$-th derivative of bessel_i |
bessel_k_prime | $n$-th derivative of bessel_k |
hankel_1_prime | $n$-th derivative of hankel_1 |
hankel_2_prime | $n$-th derivative of hankel_2 |
§Spherical Bessel functions
| Function | Description |
|---|---|
sph_bessel_j | Spherical Bessel function of the first kind, $j_n(z)$ |
sph_bessel_j_prime | Derivative of sph_bessel_j, $j_n'(z)$ |
sph_bessel_y | Spherical Bessel function of the second kind, $y_n(z)$ |
sph_bessel_y_prime | Derivative of sph_bessel_y, $y_n'(z)$ |
sph_bessel_i | Modified Spherical Bessel function of the first kind, $i_n(z)$ |
sph_bessel_i_prime | Derivative of sph_bessel_i, $i_n'(z)$ |
sph_bessel_k | Modified Spherical Bessel function of the second kind, $k_n(z)$ |
sph_bessel_k_prime | Derivative of sph_bessel_k, $k_n'(z)$ |
§Riccati-Bessel functions
| Function | Description |
|---|---|
riccati_j | Riccati-Bessel function of the first kind and its derivative |
riccati_y | Riccati-Bessel function of the second kind and its derivative |
§Struve functions
| Function | Description |
|---|---|
struve_h | Struve function $H_{\nu}(x)$ |
struve_l | Modified Struve function $L_{\nu}(x)$ |
itstruve0 | Integral of the Struve function of order 0, $H_0(x)$ |
it2struve0 | Integral related to the Struve function of order 0 |
itmodstruve0 | Integral of the modified Struve function of order 0, $L_0(x)$ |
§Raw statistical functions
§Binomial distribution
| Function | Description |
|---|---|
bdtr | Cumulative distribution function |
bdtrc | Complement of bdtr |
bdtri | Inverse of bdtr |
§F distribution
| Function | Description |
|---|---|
fdtr | Cumulative distribution function |
fdtrc | Complement of fdtr |
fdtri | Inverse of fdtr |
§Gamma distribution
| Function | Description |
|---|---|
gdtr | Cumulative distribution function |
gdtrc | Complement of gdtr |
gdtrib | Inverse of gdtr(a, b, x) with respect to b |
§Negative binomial distribution
| Function | Description |
|---|---|
nbdtr | Cumulative distribution function |
nbdtrc | Complement of nbdtr |
nbdtri | Inverse of nbdtr |
§Normal distribution
| Function | Description |
|---|---|
ndtr | Cumulative distribution function |
log_ndtr | Logarithm of ndtr |
ndtri | Inverse of ndtr |
§Poisson distribution
| Function | Description |
|---|---|
pdtr | Cumulative distribution function |
pdtrc | Complement of pdtr |
pdtri | Inverse of pdtr |
§Student’s t distribution
§Chi square distribution
| Function | Description |
|---|---|
chdtr | Cumulative distribution function |
chdtrc | Complement of chdtr |
chdtri | Inverse of chdtr |
§Kolmogorov distribution
| Function | Description |
|---|---|
kolmogorov | Survival function |
kolmogp | Derivative of kolmogorov |
kolmogi | Inverse of kolmogorov |
kolmogc | Complement of kolmogorov |
kolmogci | Inverse of kolmogc |
§Kolmogorov-Smirnov distribution
| Function | Description |
|---|---|
smirnov | Survival function |
smirnovp | Derivative of smirnov |
smirnovi | Inverse of smirnov |
smirnovc | Complement of smirnov |
smirnovci | Inverse of smirnovc |
§Box-Cox transformation
| Function | Description |
|---|---|
boxcox | Box-Cox transformation of $x$ |
boxcox1p | Box-Cox transformation of $1 + x$ |
inv_boxcox | Inverse of boxcox |
inv_boxcox1p | Inverse of boxcox1p |
§Sigmoidal functions
| Function | Description |
|---|---|
logit | Logit function, $\ln ( \frac{x}{1-x} )$ |
expit | Expit function, $\frac{1}{1 + \exp(-x)}$ |
log_expit | Logarithm of expit |
§Miscellaneous
| Function | Description |
|---|---|
tukeylambdacdf | Tukey-Lambda cumulative distribution function |
owens_t | Owen’s T function |
§Information Theory functions
| Function | Description |
|---|---|
entr | Elementwise function for computing entropy, $H[X]$ |
rel_entr | Elementwise function for computing relative entropy, $H[X \rvert Y]$ |
kl_div | Elementwise function for computing Kullback-Leibler divergence |
huber | Huber loss function, $L_\delta(r)$ |
pseudo_huber | Pseudo-Huber loss function, $\widetilde{L}_\delta(r)$ |
§Gamma and related functions
| Function | Description |
|---|---|
gamma | Gamma function, $\Gamma(z)$ |
gammaln | Log-gamma function, $\ln\abs{\Gamma(z)}$ |
loggamma | Principal branch of $\ln \Gamma(z)$ |
gammasgn | Sign of gamma, $\sgn(\Gamma(z))$ |
gammainc | Regularized lower incomplete gamma function $P(a,x) = 1 - Q(a,x)$ |
gammaincinv | Inverse of gammainc, $P^{-1}(a,y)$ |
gammaincc | Regularized upper incomplete gamma function $Q(a,x) = 1 - P(a,x)$ |
gammainccinv | Inverse of gammaincc, $Q^{-1}(a,y)$ |
beta | Beta function, $\B(a,b) = {\Gamma(a)\Gamma(b) \over \Gamma(a+b)}$ |
betaln | Log-Beta function, $\ln\abs{\B(a,b)}$ |
betainc | Regularized incomplete beta function, $\I_x(a,b)$ |
betaincinv | Inverse of betainc, $\I_y^{-1}(a,b)$ |
digamma | The digamma function, $\psi(z)$ |
polygamma | The polygamma function, $\psi^{(n)}(x)$ |
rgamma | Reciprocal of the gamma function, $\frac{1}{\Gamma(z)}$ |
pow_rising | Rising factorial $\rpow x m = {\Gamma(x+m) \over \Gamma(x)}$ |
pow_falling | Falling factorial $\fpow x m = {\Gamma(x+1) \over \Gamma(x+1-m)}$ |
§Error function and Fresnel integrals
| Function | Description |
|---|---|
erf | Error function, $\erf(z)$ |
erfc | Complementary error function, $\erfc(z) = 1 - \erf(z)$ |
erfcx | Scaled complementary error function, $e^{z^2} \erfc(z)$ |
erfi | Imaginary error function $\erfi(z) = -i \erf(i z)$ |
erfinv | Inverse of erf, $\erf^{-1}(z)$ |
erfcinv | Inverse of erfc, $\erfc^{-1}(z) = \erf^{-1}(1 - z)$ |
erf_zeros | Zeros (roots) of erf |
wofz | Faddeeva function, $w(z) = e^{-z^2} \erfc(-iz)$ |
dawsn | Dawson function $D(z) = \frac{\sqrt{\pi}}{2} e^{-z^2} \erfi(z)$ |
fresnel | Fresnel integrals $S(z)$ and $C(z)$ |
fresnel_zeros | Zeros (roots) of Fresnel integrals $S(z)$ and $C(z)$ |
modified_fresnel_plus | Modified Fresnel positive integrals |
modified_fresnel_minus | Modified Fresnel negative integrals |
voigt_profile | Voigt profile |
§Legendre functions
| Function | Description |
|---|---|
legendre_p | Legendre polynomial of the first kind, $P_n(z)$ |
legendre_p_all | All Legendre polynomials of the first kind |
assoc_legendre_p | Associated Legendre polynomial of the 1st kind, $P_n^m(z)$ |
assoc_legendre_p_all | All associated Legendre polynomials of the 1st kind |
assoc_legendre_p_norm | Normalized associated Legendre polynomial |
assoc_legendre_p_norm_all | All normalized associated Legendre polynomials |
sph_legendre_p | Spherical Legendre polynomial of the first kind |
sph_legendre_p_all | All spherical Legendre polynomials of the first kind |
sph_harm_y | Spherical harmonics, $Y_n^m(\theta,\phi)$ |
sph_harm_y_all | All spherical harmonics |
legendre_q_all | All Legendre functions of the 2nd kind and derivatives |
assoc_legendre_q_all | All associated Legendre functions of the 2nd kind and derivatives |
§Orthogonal polynomials
The following functions evaluate values of orthogonal polynomials:
| Function | Name | Notation |
|---|---|---|
eval_jacobi | Jacobi | $P_n^{(\alpha,\beta)}(z)$ |
eval_legendre | Legendre | $P_n(z)$ |
eval_chebyshev_t | Chebyshev (first kind) | $T_n(z)$ |
eval_chebyshev_u | Chebyshev (second kind) | $U_n(z)$ |
eval_gegenbauer | Gegenbauer / Ultraspherical | $C_n^{(\alpha)}(z)$ |
eval_genlaguerre | Generalized Laguerre | $L_n^{(\alpha)}(z)$ |
eval_laguerre | Laguerre | $L_n(z)$ |
eval_hermite_h | Hermite (physicist’s) | $H_n(x)$ |
eval_hermite_he | Hermite (probabilist’s) | $He_n(x)$ |
§Hypergeometric functions
| Function | Description | Notation |
|---|---|---|
hyp0f0 | Generalized hypergeometric function | $_0F_0\left[ \middle| z\right]$ |
hyp1f0 | Generalized hypergeometric function | $_1F_0\left[a\middle| z\right]$ |
hyp0f1 | Confluent hypergeometric limit function | $_0F_1\left[b\middle| z\right]$ |
hyp1f1 | Confluent hypergeometric function | $\hyp 1 1 a b z$ |
hyp2f1 | Gauss’ hypergeometric function | $\hyp 2 1 {a_1\enspace a_2} b z$ |
hypu | Confluent hypergeometric function | $U(a_1,a_2,x)$ |
§Parabolic cylinder functions
| Function | Description |
|---|---|
pbdv | Parabolic cylinder function $D_v(x)$ and its derivative $D_v'(x)$ |
pbvv | Parabolic cylinder function $V_v(x)$ and its derivative $V_v'(x)$ |
pbwa | Parabolic cylinder function $W_a(x)$ and its derivative $W_a'(x)$ |
§Mathieu and related functions
| Even | Odd | Description |
|---|---|---|
mathieu_a | mathieu_b | Characteristic value of the Mathieu functions |
mathieu_cem | mathieu_sem | Mathieu functions |
mathieu_modcem1 | mathieu_modsem1 | Modified Mathieu functions of the first kind |
mathieu_modcem2 | mathieu_modsem2 | Modified Mathieu functions of the second kind |
mathieu_even_coef | mathieu_odd_coef | Fourier coefficients for Mathieu functions |
§Spherical wave functions
| Function | Description |
|---|---|
prolate_aswfa_nocv | Prolate spheroidal angular function of the first kind |
prolate_radial1_nocv | Prolate spheroidal radial function of the first kind |
prolate_radial2_nocv | Prolate spheroidal radial function of the second kind |
oblate_aswfa_nocv | Oblate spheroidal angular function of the first kind |
oblate_radial1_nocv | Oblate spheroidal radial function of the first kind |
oblate_radial2_nocv | Oblate spheroidal radial function of the second kind |
prolate_segv | Characteristic value of prolate spheroidal function |
oblate_segv | Characteristic value of oblate spheroidal function |
The following functions require pre-computed characteristic value:
| Function | Description |
|---|---|
prolate_aswfa | Prolate spheroidal angular function of the first kind |
prolate_radial1 | Prolate spheroidal radial function of the first kind |
prolate_radial2 | Prolate spheroidal radial function of the second kind |
oblate_aswfa | Oblate spheroidal angular function of the first kind |
oblate_radial1 | Oblate spheroidal radial function of the first kind |
oblate_radial2 | Oblate spheroidal radial function of the second kind |
§Kelvin functions
| Function | Zeros | Description |
|---|---|---|
kelvin | kelvin_zeros | Kelvin functions as complex numbers |
ber | ber_zeros | Kelvin function $\ber(x)$ |
berp | berp_zeros | Derivative of ber, $\ber'(x)$ |
bei | bei_zeros | Kelvin function $\bei(x)$ |
beip | beip_zeros | Derivative of bei, $\bei'(x)$ |
ker | ker_zeros | Kelvin function $\ker(x)$ |
kerp | kerp_zeros | Derivative of ker, $\ker'(x)$ |
kei | kei_zeros | Kelvin function $\kei(x)$ |
keip | keip_zeros | Derivative of kei, $\kei'(x)$ |
§Combinatorics
| Function | Description |
|---|---|
comb | $k$-combinations of $n$ things, $_nC_k = {n \choose k}$ |
comb_rep | $k$-combinations with replacement, $\big(\!\!{n \choose k}\!\!\big)$ |
perm | $k$-permutations of $n$ things, $_nP_k = {n! \over (n-k)!}$ |
stirling2 | Stirling number of the second kind $S(n,k)$ |
§Factorials
| Function | Description |
|---|---|
factorial | Factorial $n!$ |
factorial_checked | factorial with overflow checking |
multifactorial | Multifactorial $n!_{(k)}$ |
multifactorial_checked | multifactorial with overflow checking |
§Exponential integrals
| Function | Description |
|---|---|
expn | Generalized exponential integral $E_n(x)$ |
expi | Exponential integral $Ei(x)$ |
exp1 | Exponential integral $E_1(x)$ |
scaled_exp1 | Scaled exponential integral $x e^x E_1(x)$ |
§Zeta functions
| Function | Description |
|---|---|
zeta | Hurwitz zeta function $\zeta(z,q)$ for real or complex $z$ |
riemann_zeta | Riemann zeta function $\zeta(z)$ for real or complex $z$ |
zetac | $\zeta(x) - 1$ for real $x$ |
§Other special functions
| Function | Description |
|---|---|
bernoulli | Bernoulli numbers $B_0,\dotsc,B_{N-1}$ |
binom | Binomial coefficient $\binom{n}{k}$ for real input |
diric | Periodic sinc function, also called the Dirichlet kernel |
euler | Euler numbers $E_0,\dotsc,E_{N-1}$ |
lambertw | Lambert W function, $W(z)$ |
sici | Sine and cosine integrals $\Si(z)$ and $\Ci(z)$ |
shichi | Hyperbolic sine and cosine integrals $\Shi(z)$ and $\Chi(z)$ |
spence | Spence’s function, also known as the dilogarithm |
softplus | $\ln(1 + e^x)$ |
log1mexp | $\ln(1 - e^x)$ |
§Convenience functions
| Function | Description |
|---|---|
cbrt | $\sqrt[3]{x}$ |
exp10 | $10^x$ |
exp2 | $2^x$ |
radian | Convert from degrees to radians |
cosdg | Cosine of an angle in degrees |
sindg | Sine of an angle in degrees |
tandg | Tangent of an angle in degrees |
cotdg | Cotangent of an angle in degrees |
expm1 | $e^x - 1$ |
cosm1 | $\cos(x) - 1$ |
round | Round to nearest or even integer-valued float |
xlogy | $x \ln(y)$ or $0$ if $x = 0$ |
xlog1py | $x \ln(1+y)$ or $0$ if $x = 0$ |
logaddexp | $\ln(e^x + e^y)$ |
logaddexp2 | $\log_2(2^x + 2^y)$ |
exprel | Relative error exponential, $e^x - 1 \over x$ |
sinc | Normalized sinc function, $\sin(\pi x) \over \pi x$ |
Functions§
- airy
- Airy functions and derivatives
- airy_
ai_ zeros - Zeros and values of the Airy function Ai and its derivative
- airy_
bi_ zeros - Zeros and values of the Airy function Bi and its derivative
- airy_
integrals - Integrals of Airy functions
- airy_
scaled - Exponentially scaled Airy functions and derivatives
- assoc_
legendre_ p - Associated Legendre polynomial of the 1st kind
- assoc_
legendre_ p_ all - All associated Legendre polynomials of the 1st kind
- assoc_
legendre_ p_ norm - Normalized associated Legendre polynomial of the 1st kind
- assoc_
legendre_ p_ norm_ all - All normalized associated Legendre polynomials of the 1st kind
- assoc_
legendre_ q_ all - All associated Legendre polynomials of the 2nd kind and their derivatives
- bdtr
- Binomial distribution function
- bdtrc
- Binomial survival function
- bdtri
- Binomial quantile function
- bei
- Kelvin function bei
- bei_
zeros - First
ntzeros of Kelvin functionbei - beip
- Derivative of the Kelvin function
bei - beip_
zeros - First
ntzeros of Kelvin function derivativebeip - ber
- Kelvin function ber
- ber_
zeros - First
ntzeros of Kelvin functionber - bernoulli
- Bernoulli numbers B0, …, BN-1
- berp
- Derivative of the Kelvin function
ber - berp_
zeros - First
ntzeros of Kelvin function derivativeberp - bessel_
i - Modified Bessel function of the first kind, $I_v(z)$
- bessel_
i0 - Modified Bessel function of the first kind of order 0, $I_0(x)$
- bessel_
i0e - Exponentially scaled modified Bessel function of the first kind of order 0, $e^{-|x|} I_0(x)$
- bessel_
i1 - Modified Bessel function of the first kind of order 1, $I_1(x)$
- bessel_
i1e - Exponentially scaled modified Bessel function of the first kind of order 1, $e^{-|x|} I_1(x)$
- bessel_
i_ prime - Compute the $n$th derivative of
bessel_i(v, z)w.r.t.z - bessel_
ie - Exponentially scaled modified Bessel function of the first kind
- bessel_
j - Bessel function of the first kind, $J_v(z)$
- bessel_
j0 - Bessel function of the first kind of order 0, $J_0(x)$
- bessel_
j1 - Bessel function of the first kind of order 1, $J_1(x)$
- bessel_
j_ prime - Compute the $n$th derivative of
bessel_j(v, z)w.r.t.z - bessel_
je - Exponentially scaled Bessel function of the first kind
- bessel_
k - Modified Bessel function of the second kind, $K_v(z)$
- bessel_
k0 - Modified Bessel function of the second kind of order 0, $K_0(x)$
- bessel_
k0e - Exponentially scaled modified Bessel function of the second kind of order 0, $e^x K_0(x)$
- bessel_
k1 - Modified Bessel function of the second kind of order 1, $K_1(x)$
- bessel_
k1e - Exponentially scaled modified Bessel function of the second kind of order 1, $e^x K_1(x)$
- bessel_
k_ prime - Compute the $n$th derivative of
bessel_k(v, z)w.r.t.z - bessel_
ke - Exponentially scaled modified Bessel function of the second kind
- bessel_
y - Bessel function of the second kind, $Y_v(z)$
- bessel_
y0 - Bessel function of the second kind of order 0, $Y_0(x)$
- bessel_
y1 - Bessel function of the second kind of order 1, $Y_1(x)$
- bessel_
y_ prime - Compute the $n$th derivative of
bessel_y(v, z)w.r.t.z - bessel_
ye - Exponentially scaled Bessel function of the second kind
- bessel_
zeros - Compute $N$ zeros of Bessel functions $J_v(x)$, $J_v'(x)$, $Y_v(x)$, and $Y_v'(x)$
- besselpoly
- Weighted integral of the Bessel function of the first kind, $\int_0^1 x^\lambda \mathop{J}_v(2ax) \dd x$
- beta
- Beta function
- betainc
- Regularized incomplete beta function
- betaincinv
- Inverse of the regularized incomplete beta function
- betaln
- Logarithm of the absolute value of
beta - binom
- Binomial coefficient considered as a function of two real variables
- boxcox
- Box-Cox transformation
- boxcox1p
- Box-Cox transformation of 1 +
x - cbrt
- Cube root
- cevalpoly
- Evaluate polynomials
- chdtr
- Chi-squared distribution function
- chdtrc
- Chi-squared survival function
- chdtri
- Chi-squared quantile function
- comb
- k-combinations of n things, nCk
- comb_
rep - k-combinations of n things with replacement
- cosdg
- Circular cosine of angle in degrees
- cosm1
- Compute
cos(x) - 1 - cospi
- Compute
cos(pi*z)for real or complexz - cotdg
- Circular cotangent of argument in degrees
- dawsn
- Dawson function
sqrt(pi)/2 * exp(-z^2) * erfi(z)for real or complex input - digamma
- Digamma function for real or complex input
- diric
- Dirichlet kernel, also known as the periodic sinc function.
- ellipe
- Complete elliptic integral of the second kind
- ellipeinc
- Incomplete elliptic integral of the second kind
- ellipj
- Jacobi elliptic functions
- ellipk
- Complete elliptic integral of the first kind
- ellipkinc
- Incomplete elliptic integral of the first kind
- ellipkm1
- Complete elliptic integral of the first kind around
m = 1 - entr
- Elementwise function for computing the entropy
- erf
- Error function
erf(z)for real or complex input - erf_
zeros - Zeros of the error function
erf(z)in the first quadrant of the complex plane - erfc
- Complementary error function
1 - erf(z)for real or complex input - erfcinv
- Inverse of the complementary error function erfc(x)
- erfcx
- Scaled complementary error function
exp(z^2) * erfc(z)for real or complex input - erfi
- Imaginary error function
-i erf(i z)for real or complex input - erfinv
- Inverse of the error function erf(x)
- euler
- Euler numbers E0, …, EN-1
- eval_
chebyshev_ t - Evaluate Chebyshev polynomial of the first kind $T_n$ at a point.
- eval_
chebyshev_ u - Evaluate Chebyshev polynomial of the second kind $U_n$ at a point.
- eval_
gegenbauer - Evaluate Gegenbauer polynomial $C_n^{(\alpha)}$ at a point.
- eval_
genlaguerre - Evaluate generalized Laguerre polynomial $L_n^{(\alpha)}$ at a point.
- eval_
hermite_ h - Evaluate physicists’ Hermite polynomial $H_n(x)$ at a point
- eval_
hermite_ he - Evaluate probabilists’ (normalized) Hermite polynomial $He_n(x)$ at a point
- eval_
jacobi - Evaluate Jacobi polynomial $P_n^{(\alpha, \beta)}$ at a point.
- eval_
laguerre - Evaluate Laguerre polynomial $L_n$ at a point
- eval_
legendre - Evaluate Legendre polynomial $P_n$ at a point.
- exp1
- Exponential integral E₁ for real or complex input
- exp2
2^x- exp10
10^x- expi
- Exponential integral Ei for real or complex input
- expit
- Expit (a.k.a. logistic sigmoid) function, $1 / (1 + e^{-x})$
- expm1
exp(x) - 1for real or complex input- expn
- Generalized exponential integral Eₙ(x)
- exprel
- Relative error exponential, $(e^x - 1) / x$
- extended_
absolute_ error - Extended absolute error metric between two
f64orComplex<f64>values - extended_
relative_ error - Extended relative error metric between two
f64orComplex<f64>values - factorial
- Factorial n!
- factorial_
checked - Factorial n! with overflow checking
- fdtr
- F distribution function
- fdtrc
- F survival function
- fdtri
- F quantile function
- fresnel
- Fresnel integrals S(z) and C(z) for real or complex argument
- fresnel_
zeros - Zeros of Fresnel integrals S(z) and C(z)
- gamma
- Gamma function for real or complex input
- gammainc
- Regularized lower incomplete gamma function
- gammaincc
- Regularized upper incomplete gamma function
- gammainccinv
- Inverse of
gammaincc - gammaincinv
- Inverse of
gammainc - gammaln
- Logarithm of the absolute value of the gamma function
- gammasgn
- Sign of the Gamma function
- gdtr
- Gamma distribution function
- gdtrc
- Gamma survival function
- gdtrib
- Inverse of
p = gdtr(a, b, x)with respect tob - hankel_
1 - Hankel function of the first kind, $H_v^{(1)}(z)$
- hankel_
2 - Hankel function of the second kind, $H_v^{(2)}(z)$
- hankel_
1_ prime - Compute the $n$th derivative of
hankel_1(v, z)w.r.t.z - hankel_
1e - Exponentially scaled Hankel function of the first kind
- hankel_
2_ prime - Compute the $n$th derivative of
hankel_2(v, z)w.r.t.z - hankel_
2e - Exponentially scaled Hankel function of the second kind
- huber
- Huber Loss function
- hyp0f0
- Hypergeometric function $_0F_0\left[\middle| z\right]$ for real or complex $z$
- hyp0f1
- Confluent hypergeometric limit function $_0F_1\left[b\middle| z\right]$ for real or complex $z$
- hyp1f0
- Hypergeometric function $_1F_0\left[a\middle| z\right]$ for real or complex $z$
- hyp1f1
- Kummer’s Confluent hypergeometric function $_1F_1$
- hyp2f1
- Gauss’ hypergeometric function $_2F_1$
- hypu
- Tricomi’s confluent hypergeometric function $U(a,b,x)$
- inv_
boxcox - Inverse of the Box-Cox transformation
- inv_
boxcox1p - Inverse of the Box-Cox transformation of 1 +
x - it1i0k0
- Integrals of modified Bessel functions of order 0
- it1j0y0
- Integrals of Bessel functions of order 0
- it2i0k0
- Integrals related to modified Bessel functions of order 0.
- it2j0y0
- Integrals related to Bessel functions of the first kind of order 0
- it2struve0
- Integral related to the Struve function of order 0
- itmodstruve0
- Integral of the modified Struve function of order 0
- itstruve0
- Integral of the Struve function of order 0
- iv_
ratio - Compute
iv(v,x)/iv(v-1,x)of the modified Bessel function of the first kind - iv_
ratio_ c - Compute
iv(v,x)/iv(v-1,x)of the modified Bessel function of the first kind - jahnke_
emden_ lambda - Evaluate the Jahnke-Emden Lambda function $\Lambda_v(x)$ and its derivatives
- kei
- Kelvin function kei
- kei_
zeros - First
ntzeros of Kelvin functionkei - keip
- Derivative of the Kelvin function
kei - keip_
zeros - First
ntzeros of Kelvin function derivativekeip - kelvin
- Kelvin functions as complex numbers
- kelvin_
zeros - First
ntzeros of all Kelvin functions and their derivatives - ker
- Kelvin function ker
- ker_
zeros - First
ntzeros of Kelvin functionker - kerp
- Derivative of the Kelvin function
ker - kerp_
zeros - First
ntzeros of Kelvin function derivativekerp - kl_div
- Elementwise function for computing the Kullback-Leibler divergence
- kolmogc
- Kolmogorov distribution function
- kolmogci
- Inverse of
kolmogc - kolmogi
- Inverse of
kolmogorov - kolmogorov
- Kolmogorov survival function
- kolmogp
- Derivative of
kolmogorov - lambertw
- Lambert W function.
- legendre_
p - Legendre polynomial of degree
n - legendre_
p_ all - All Legendre polynomials of the 1st kind
- legendre_
q_ all - All Legendre polynomials of the 2nd kind and their derivatives
- log1mexp
- Compute $\ln(1 - e^x)$
- log1p
log(z + 1)for real or complex input- log1pmx
- Compute
log(1 + x) - xfor real input - log_
expit - Natural logarithm of
expit - log_
ndtr - Log of
ndtrfor real or complex argument - log_
wright_ bessel - Natural logarithm of Wright’s generalized Bessel function, see
wright_bessel - logaddexp
- ln(ex + ey)
- logaddexp2
- log2(2x + 2y)
- loggamma
- Principal branch of the logarithm of
gamma(z) - logit
- Logit function, $\ln(x / (1 - x))$
- mathieu_
a - Characteristic value of even Mathieu functions
- mathieu_
b - Characteristic value of odd Mathieu functions
- mathieu_
cem - Even Mathieu function and its derivative
- mathieu_
even_ coef - Fourier coefficients for even Mathieu and modified Mathieu functions
- mathieu_
modcem1 - Even modified Mathieu function of the first kind and its derivative
- mathieu_
modcem2 - Even modified Mathieu function of the second kind and its derivative
- mathieu_
modsem1 - Odd modified Mathieu function of the first kind and its derivative
- mathieu_
modsem2 - Odd modified Mathieu function of the second kind and its derivative
- mathieu_
odd_ coef - Fourier coefficients for odd Mathieu and modified Mathieu functions
- mathieu_
sem - Odd Mathieu function and its derivative
- modified_
fresnel_ minus - Modified Fresnel negative integrals
- modified_
fresnel_ plus - Modified Fresnel positive integrals
- multifactorial
- Multifactorial n!(k) for positive k
- multifactorial_
checked - Multifactorial n!(k) for positive k with overflow checking
- nbdtr
- Negative binomial distribution function
- nbdtrc
- Negative binomial survival function
- nbdtri
- Negative binomial quantile function
- ndtr
- Normal distribution function
F(z)for real or complexz - ndtri
- Inverse of
ndtr - oblate_
aswfa - Oblate spheroidal angular function for precomputed characteristic value
- oblate_
aswfa_ nocv - Oblate spheroidal angular function of the 1st kind and its derivative
- oblate_
radial1 - Oblate spheroidal radial function of the 1st kind for precomputed characteristic value
- oblate_
radial2 - Oblate spheroidal radial function of the 2nd kind for precomputed characteristic value
- oblate_
radial1_ nocv - Oblate spheroidal radial function of the 1st kind and its derivative
- oblate_
radial2_ nocv - Oblate spheroidal radial function of the second kind and its derivative
- oblate_
segv - Characteristic value of oblate spheroidal function
- owens_t
- Owen’s T function
- pbdv
- Parabolic cylinder function D
- pbvv
- Parabolic cylinder function V
- pbwa
- Parabolic cylinder function W
- pdtr
- Poisson distribution function
- pdtrc
- Poisson survival function
- pdtri
- Poisson quantile function
- perm
- k-permutations of n things, nPk
- pmv
- Associated Legendre function for
|x| ≤ 1 - polygamma
- Polygamma function ψ(n)(x)
- pow_
falling - Falling factorial
- pow_
rising - Rising factorial
- prolate_
aswfa - Prolate spheroidal angular function for precomputed characteristic value
- prolate_
aswfa_ nocv - Prolate spheroidal angular function of the 1st kind and its derivative
- prolate_
radial1 - Prolate spheroidal radial function of the 1st kind for precomputed characteristic value
- prolate_
radial2 - Prolate spheroidal radial function of the 2nd kind for precomputed characteristic value
- prolate_
radial1_ nocv - Prolate spheroidal radial function of the 1st kind and its derivative
- prolate_
radial2_ nocv - Prolate spheroidal radial function of the 2nd kind and its derivative
- prolate_
segv - Characteristic value of prolate spheroidal function
- pseudo_
huber - Pseudo-Huber Loss function
- radian
- Degrees, minutes, seconds to radians
- rel_
entr - Elementwise function for computing relative entropy
- rgamma
- Reciprocal Gamma function
1 / gamma(z) - riccati_
j - Compute Riccati-Bessel function of the first kind and derivatives for the first $N$ orders
- riccati_
y - Compute Riccati-Bessel function of the second kind and derivatives for the first $N$ orders
- riemann_
zeta - Riemann zeta function for real or complex input
- round
- Round to nearest or even integer-valued float
- scaled_
exp1 - Scaled version of the exponential integral E₁ for real input
- shichi
- Hyperbolic sine and cosine integrals.
- sici
- Sine and cosine integrals.
- sinc
- Normalized sinc function
- sindg
- Circular sine of angle in degrees
- sinpi
- Compute
sin(pi*z)for real or complexz - smirnov
- Kolmogorov-Smirnov survival function
- smirnovc
- Kolmogorov-Smirnov distribution function
- smirnovci
- Inverse of
smirnovc - smirnovi
- Inverse of
smirnov - smirnovp
- Derivative of
smirnov - softplus
- ln(1 + ex)
- spence
- Spence’s function, also known as the dilogarithm.
- sph_
bessel_ i - Modified spherical Bessel function of the first kind, $i_n(z)$
- sph_
bessel_ i_ prime - Derivative of
sph_bessel_i, $i_n'(z)$ - sph_
bessel_ j - Spherical Bessel function of the first kind, $j_n(z)$
- sph_
bessel_ j_ prime - Derivative of
sph_bessel_j, $j_n'(z)$ - sph_
bessel_ k - Modified spherical Bessel function of the second kind, $k_n(z)$
- sph_
bessel_ k_ prime - Derivative of
sph_bessel_k, $k_n'(z)$ - sph_
bessel_ y - Spherical Bessel function of the second kind, $y_n(z)$
- sph_
bessel_ y_ prime - Derivative of
sph_bessel_y, $y_n'(z)$ - sph_
harm_ y - Spherical harmonics
- sph_
harm_ y_ all - All spherical harmonics up to the specified degree
nand orderm - sph_
legendre_ p - Spherical Legendre polynomial of degree
nand orderm - sph_
legendre_ p_ all - All spherical Legendre polynomials of the 1st kind
- stdtr
- Student’s t distribution cumulative distribution function
- stdtri
- Inverse of
stdtr - stirling2
- Stirling number of the second kind S(n,k)
- struve_
h - Struve
Hfunction - struve_
l - Struve
Lfunction - tandg
- Circular tangent of argument in degrees
- tukeylambdacdf
- Tukey-Lambda distribution function
- voigt_
profile - Voigt profile
- wofz
- Faddeeva function
exp(-z^2) * erfc(-i z) - wright_
bessel - Wright’s generalized Bessel function
- xlog1py
- Compute
x * log(1 + y)for real or complex input - xlogy
- Compute
x * log(y)for real or complex input - zeta
- Riemann zeta function of two arguments for real or complex
z - zetac
- Riemann zeta function, minus one