Crate xsf

Crate xsf 

Source
Expand description

This crate provides equivalent Rust implementations of scipy.special functions, and bindings to the bundled xsf C++ library that powers scipy.special.

Most of the scipy.special functions are available. See the scipy.special documentation for additional information.

§Airy functions

FunctionDescription
airyAiry functions and derivatives
airy_scaledExponentially scaled Airy functions and derivatives
airy_ai_zerosZeros and values of the Airy function Ai and its derivative
airy_bi_zerosZeros and values of the Airy function Bi and its derivative
airy_integralsIntegrals of Airy functions

§Elliptic functions and integrals

FunctionDescription
ellipjJacobian elliptic functions
ellipkComplete elliptic integral of the first kind
ellipkm1Complete elliptic integral of the first kind around $m = 1$
ellipkincIncomplete elliptic integral of the first kind
ellipeComplete elliptic integral of the second kind
ellipeincIncomplete elliptic integral of the second kind

§Bessel functions

FunctionDescription
bessel_jBessel function of the first kind, $J_v(z)$
bessel_jeExponentially scaled Bessel function of the first kind
bessel_yBessel function of the second kind, $Y_v(z)$
bessel_yeExponentially scaled Bessel function of the second kind
bessel_iModified Bessel function of the first kind, $I_v(z)$
bessel_ieExponentially scaled modified Bessel function of the first kind
bessel_kModified Bessel function of the second kind, $K_v(z)$
bessel_keExponentially scaled modified Bessel function of the second kind
hankel_1Hankel function of the first kind, $H_v^{(1)}(z)$
hankel_1eExponentially scaled Hankel function of the first kind
hankel_2Hankel function of the second kind, $H_v^{(2)}(z)$
hankel_2eExponentially scaled Hankel function of the second kind
wright_besselWright’s generalized Bessel function
log_wright_besselNatural logarithm of Wright’s generalized Bessel function
jahnke_emden_lambdaJahnke-Emden Lambda function $\Lambda_{\nu}(x)$ and derivatives

§Zeros of Bessel functions

FunctionDescription
bessel_zerosZeros of Bessel functions $J_v(x)$, $J_v'(x)$, $Y_v(x)$, and $Y_v'(x)$

§Faster versions of common Bessel functions

FunctionDescription
bessel_j0Bessel function of the first kind of order 0, $J_0(x)$
bessel_j1Bessel function of the first kind of order 1, $J_1(x)$
bessel_y0Bessel function of the second kind of order 0, $Y_0(x)$
bessel_y1Bessel function of the second kind of order 1, $Y_1(x)$
bessel_i0Modified Bessel function of the first kind of order 0, $I_0(x)$
bessel_i0eExponentially scaled modified Bessel function of the first kind of order 0
bessel_i1Modified Bessel function of the first kind of order 1, $I_1(x)$
bessel_i1eExponentially scaled modified Bessel function of the first kind of order 1
bessel_k0Modified Bessel function of the second kind of order 0, $K_0(x)$
bessel_k0eExponentially scaled modified Bessel function of the second kind of order 0
bessel_k1Modified Bessel function of the second kind of order 1, $K_1(x)$
bessel_k1eExponentially scaled modified Bessel function of the second kind of order 1

§Integrals of Bessel functions

FunctionDescription
it1j0y0Integral of Bessel functions of the first kind of order 0
it2j0y0Integral related to Bessel functions of the first kind of order 0
it1i0k0Integral of modified Bessel functions of the second kind of order 0
it2i0k0Integral related to modified Bessel functions of the second kind of order 0
besselpolyWeighted integral of the Bessel function of the first kind

§Derivatives of Bessel functions

FunctionDescription
bessel_j_prime$n$-th derivative of bessel_j
bessel_y_prime$n$-th derivative of bessel_y
bessel_i_prime$n$-th derivative of bessel_i
bessel_k_prime$n$-th derivative of bessel_k
hankel_1_prime$n$-th derivative of hankel_1
hankel_2_prime$n$-th derivative of hankel_2

§Spherical Bessel functions

FunctionDescription
sph_bessel_jSpherical Bessel function of the first kind, $j_n(z)$
sph_bessel_j_primeDerivative of sph_bessel_j, $j_n'(z)$
sph_bessel_ySpherical Bessel function of the second kind, $y_n(z)$
sph_bessel_y_primeDerivative of sph_bessel_y, $y_n'(z)$
sph_bessel_iModified Spherical Bessel function of the first kind, $i_n(z)$
sph_bessel_i_primeDerivative of sph_bessel_i, $i_n'(z)$
sph_bessel_kModified Spherical Bessel function of the second kind, $k_n(z)$
sph_bessel_k_primeDerivative of sph_bessel_k, $k_n'(z)$

§Riccati-Bessel functions

FunctionDescription
riccati_jRiccati-Bessel function of the first kind and its derivative
riccati_yRiccati-Bessel function of the second kind and its derivative

§Struve functions

FunctionDescription
struve_hStruve function $H_{\nu}(x)$
struve_lModified Struve function $L_{\nu}(x)$
itstruve0Integral of the Struve function of order 0, $H_0(x)$
it2struve0Integral related to the Struve function of order 0
itmodstruve0Integral of the modified Struve function of order 0, $L_0(x)$

§Raw statistical functions

§Binomial distribution

FunctionDescription
bdtrCumulative distribution function
bdtrcComplement of bdtr
bdtriInverse of bdtr

§F distribution

FunctionDescription
fdtrCumulative distribution function
fdtrcComplement of fdtr
fdtriInverse of fdtr

§Gamma distribution

FunctionDescription
gdtrCumulative distribution function
gdtrcComplement of gdtr
gdtribInverse of gdtr(a, b, x) with respect to b

§Negative binomial distribution

FunctionDescription
nbdtrCumulative distribution function
nbdtrcComplement of nbdtr
nbdtriInverse of nbdtr

§Normal distribution

FunctionDescription
ndtrCumulative distribution function
ndtriInverse of ndtr
log_ndtrLogarithm of ndtr
ndtri_expInverse of log_ndtr

§Poisson distribution

FunctionDescription
pdtrCumulative distribution function
pdtrcComplement of pdtr
pdtriInverse of pdtr

§Student’s t distribution

FunctionDescription
stdtrCumulative distribution function
stdtriInverse of stdtr

§Chi square distribution

FunctionDescription
chdtrCumulative distribution function
chdtrcComplement of chdtr
chdtriInverse of chdtr

§Kolmogorov distribution

FunctionDescription
kolmogorovSurvival function
kolmogpDerivative of kolmogorov
kolmogiInverse of kolmogorov
kolmogcComplement of kolmogorov
kolmogciInverse of kolmogc

§Kolmogorov-Smirnov distribution

FunctionDescription
smirnovSurvival function
smirnovpDerivative of smirnov
smirnoviInverse of smirnov
smirnovcComplement of smirnov
smirnovciInverse of smirnovc

§Box-Cox transformation

FunctionDescription
boxcoxBox-Cox transformation of $x$
boxcox1pBox-Cox transformation of $1 + x$
inv_boxcoxInverse of boxcox
inv_boxcox1pInverse of boxcox1p

§Sigmoidal functions

FunctionDescription
logitLogit function, $\ln ( \frac{x}{1-x} )$
expitExpit function, $\frac{1}{1 + \exp(-x)}$
log_expitLogarithm of expit

§Miscellaneous

FunctionDescription
tukeylambdacdfTukey-Lambda cumulative distribution function
owens_tOwen’s T function

§Information Theory functions

FunctionDescription
entrElementwise function for computing entropy, $H[X]$
rel_entrElementwise function for computing relative entropy, $H[X \rvert Y]$
kl_divElementwise function for computing Kullback-Leibler divergence
huberHuber loss function, $L_\delta(r)$
pseudo_huberPseudo-Huber loss function, $\widetilde{L}_\delta(r)$
FunctionDescription
gammaGamma function, $\Gamma(z)$
gammalnLog-gamma function, $\ln\abs{\Gamma(z)}$
loggammaPrincipal branch of $\ln \Gamma(z)$
gammasgnSign of gamma, $\sgn(\Gamma(z))$
gammaincRegularized lower incomplete gamma function $P(a,x) = 1 - Q(a,x)$
gammaincinvInverse of gammainc, $P^{-1}(a,y)$
gammainccRegularized upper incomplete gamma function $Q(a,x) = 1 - P(a,x)$
gammainccinvInverse of gammaincc, $Q^{-1}(a,y)$
betaBeta function, $\B(a,b) = {\Gamma(a)\Gamma(b) \over \Gamma(a+b)}$
betalnLog-Beta function, $\ln\abs{\B(a,b)}$
betaincRegularized incomplete beta function, $\I_x(a,b)$
betaincinvInverse of betainc, $\I_y^{-1}(a,b)$
digammaThe digamma function, $\psi(z)$
polygammaThe polygamma function, $\psi^{(n)}(x)$
multigammalnLog of multivariate gamma, sometimes called the generalized gamma
rgammaReciprocal of the gamma function, $\frac{1}{\Gamma(z)}$
pow_risingRising factorial $\rpow x m = {\Gamma(x+m) \over \Gamma(x)}$
pow_fallingFalling factorial $\fpow x m = {\Gamma(x+1) \over \Gamma(x+1-m)}$

§Error function and Fresnel integrals

FunctionDescription
erfError function, $\erf(z)$
erfcComplementary error function, $\erfc(z) = 1 - \erf(z)$
erfcxScaled complementary error function, $e^{z^2} \erfc(z)$
erfiImaginary error function $\erfi(z) = -i \erf(i z)$
erfinvInverse of erf, $\erf^{-1}(z)$
erfcinvInverse of erfc, $\erfc^{-1}(z) = \erf^{-1}(1 - z)$
erf_zerosZeros (roots) of erf
wofzFaddeeva function, $w(z) = e^{-z^2} \erfc(-iz)$
dawsnDawson function $D(z) = \frac{\sqrt{\pi}}{2} e^{-z^2} \erfi(z)$
fresnelFresnel integrals $S(z)$ and $C(z)$
fresnel_zerosZeros (roots) of Fresnel integrals $S(z)$ and $C(z)$
modified_fresnel_plusModified Fresnel positive integrals
modified_fresnel_minusModified Fresnel negative integrals
voigt_profileVoigt profile

§Legendre functions

FunctionDescription
legendre_pLegendre polynomial of the first kind, $P_n(z)$
legendre_p_allAll Legendre polynomials of the first kind
assoc_legendre_pAssociated Legendre polynomial of the 1st kind, $P_n^m(z)$
assoc_legendre_p_allAll associated Legendre polynomials of the 1st kind
assoc_legendre_p_normNormalized associated Legendre polynomial
assoc_legendre_p_norm_allAll normalized associated Legendre polynomials
sph_legendre_pSpherical Legendre polynomial of the first kind
sph_legendre_p_allAll spherical Legendre polynomials of the first kind
sph_harm_ySpherical harmonics, $Y_n^m(\theta,\phi)$
sph_harm_y_allAll spherical harmonics
legendre_q_allAll Legendre functions of the 2nd kind and derivatives
assoc_legendre_q_allAll associated Legendre functions of the 2nd kind and derivatives

§Orthogonal polynomials

The following functions evaluate values of orthogonal polynomials:

FunctionNameNotation
eval_jacobiJacobi$P_n^{(\alpha,\beta)}(z)$
eval_legendreLegendre$P_n(z)$
eval_chebyshev_tChebyshev (first kind)$T_n(z)$
eval_chebyshev_uChebyshev (second kind)$U_n(z)$
eval_gegenbauerGegenbauer / Ultraspherical$C_n^{(\alpha)}(z)$
eval_genlaguerreGeneralized Laguerre$L_n^{(\alpha)}(z)$
eval_laguerreLaguerre$L_n(z)$
eval_hermite_hHermite (physicist’s)$H_n(x)$
eval_hermite_heHermite (probabilist’s)$He_n(x)$

§Hypergeometric functions

FunctionDescriptionNotation
hyp0f0Generalized hypergeometric function$_0F_0\left[ \middle| z\right]$
hyp1f0Generalized hypergeometric function$_1F_0\left[a\middle| z\right]$
hyp0f1Confluent hypergeometric limit function$_0F_1\left[b\middle| z\right]$
hyp1f1Confluent hypergeometric function$\hyp 1 1 a b z$
hyp2f1Gauss’ hypergeometric function$\hyp 2 1 {a_1\enspace a_2} b z$
hypuConfluent hypergeometric function$U(a_1,a_2,x)$

§Parabolic cylinder functions

FunctionDescription
pbdvParabolic cylinder function $D_v(x)$ and its derivative $D_v'(x)$
pbvvParabolic cylinder function $V_v(x)$ and its derivative $V_v'(x)$
pbwaParabolic cylinder function $W_a(x)$ and its derivative $W_a'(x)$
EvenOddDescription
mathieu_amathieu_bCharacteristic value of the Mathieu functions
mathieu_cemmathieu_semMathieu functions
mathieu_modcem1mathieu_modsem1Modified Mathieu functions of the first kind
mathieu_modcem2mathieu_modsem2Modified Mathieu functions of the second kind
mathieu_even_coefmathieu_odd_coefFourier coefficients for Mathieu functions

§Spheroidal wave functions

FunctionDescription
prolate_aswfa_nocvProlate spheroidal angular function of the first kind
prolate_radial1_nocvProlate spheroidal radial function of the first kind
prolate_radial2_nocvProlate spheroidal radial function of the second kind
oblate_aswfa_nocvOblate spheroidal angular function of the first kind
oblate_radial1_nocvOblate spheroidal radial function of the first kind
oblate_radial2_nocvOblate spheroidal radial function of the second kind
prolate_segvCharacteristic value of prolate spheroidal function
oblate_segvCharacteristic value of oblate spheroidal function

The following functions require pre-computed characteristic value:

FunctionDescription
prolate_aswfaProlate spheroidal angular function of the first kind
prolate_radial1Prolate spheroidal radial function of the first kind
prolate_radial2Prolate spheroidal radial function of the second kind
oblate_aswfaOblate spheroidal angular function of the first kind
oblate_radial1Oblate spheroidal radial function of the first kind
oblate_radial2Oblate spheroidal radial function of the second kind

§Kelvin functions

FunctionZerosDescription
kelvinkelvin_zerosKelvin functions as complex numbers
berber_zerosKelvin function $\ber(x)$
berpberp_zerosDerivative of ber, $\ber'(x)$
beibei_zerosKelvin function $\bei(x)$
beipbeip_zerosDerivative of bei, $\bei'(x)$
kerker_zerosKelvin function $\ker(x)$
kerpkerp_zerosDerivative of ker, $\ker'(x)$
keikei_zerosKelvin function $\kei(x)$
keipkeip_zerosDerivative of kei, $\kei'(x)$

§Combinatorics

FunctionDescription
comb$k$-combinations of $n$ things, $_nC_k = {n \choose k}$
comb_rep$k$-combinations with replacement, $\big(\!\!{n \choose k}\!\!\big)$
perm$k$-permutations of $n$ things, $_nP_k = {n! \over (n-k)!}$
stirling2Stirling number of the second kind $S(n,k)$

§Factorials

FunctionDescription
factorialFactorial $n!$
factorial_checkedfactorial with overflow checking
multifactorialMultifactorial $n!_{(k)}$
multifactorial_checkedmultifactorial with overflow checking

§Exponential integrals

FunctionDescription
expnGeneralized exponential integral $E_n(x)$
expiExponential integral $Ei(x)$
exp1Exponential integral $E_1(x)$
scaled_exp1Scaled exponential integral $x e^x E_1(x)$

§Zeta functions

FunctionDescription
zetaHurwitz zeta function $\zeta(z,q)$ for real or complex $z$
riemann_zetaRiemann zeta function $\zeta(z)$ for real or complex $z$
zetac$\zeta(x) - 1$ for real $x$
FunctionDescription
lambertwLambert W function
wrightomegaWright Omega function

§Other special functions

FunctionDescription
agmArithmetic-geometric mean of two scalars
bernoulliBernoulli numbers $B_0,\dotsc,B_{N-1}$
binomBinomial coefficient $\binom{n}{k}$ for real input
diricPeriodic sinc function, also called the Dirichlet kernel
eulerEuler numbers $E_0,\dotsc,E_{N-1}$
siciSine and cosine integrals $\Si(z)$ and $\Ci(z)$
shichiHyperbolic sine and cosine integrals $\Shi(z)$ and $\Chi(z)$
softmaxSoftmax function
log_softmaxLogarithm of the softmax function
spenceSpence’s function, also known as the dilogarithm
softplus$\ln(1 + e^x)$
log1mexp$\ln(1 - e^x)$

§Convenience functions

FunctionDescription
cbrt$\sqrt[3]{x}$
exp10$10^x$
exp2$2^x$
radianConvert from degrees to radians
cosdgCosine of an angle in degrees
sindgSine of an angle in degrees
tandgTangent of an angle in degrees
cotdgCotangent of an angle in degrees
expm1$e^x - 1$
cosm1$\cos(x) - 1$
roundRound to nearest or even integer-valued float
xlogy$x \ln(y)$ or $0$ if $x = 0$
xlog1py$x \ln(1+y)$ or $0$ if $x = 0$
logaddexp$\ln(e^x + e^y)$
logaddexp2$\log_2(2^x + 2^y)$
logsumexp$\ln \sum e^{x_i}$
exprelRelative error exponential, $e^x - 1 \over x$
sincNormalized sinc function, $\sin(\pi x) \over \pi x$

Functions§

agm
Arithmetic-geometric mean
airy
Airy functions and derivatives
airy_ai_zeros
Zeros and values of the Airy function Ai and its derivative
airy_bi_zeros
Zeros and values of the Airy function Bi and its derivative
airy_integrals
Integrals of Airy functions
airy_scaled
Exponentially scaled Airy functions and derivatives
assoc_legendre_p
Associated Legendre polynomial of the 1st kind
assoc_legendre_p_all
All associated Legendre polynomials of the 1st kind
assoc_legendre_p_norm
Normalized associated Legendre polynomial of the 1st kind
assoc_legendre_p_norm_all
All normalized associated Legendre polynomials of the 1st kind
assoc_legendre_q_all
All associated Legendre polynomials of the 2nd kind and their derivatives
bdtr
Binomial distribution function
bdtrc
Binomial survival function
bdtri
Binomial quantile function
bei
Kelvin function bei
bei_zeros
First nt zeros of Kelvin function bei
beip
Derivative of the Kelvin function bei
beip_zeros
First nt zeros of Kelvin function derivative beip
ber
Kelvin function ber
ber_zeros
First nt zeros of Kelvin function ber
bernoulli
Bernoulli numbers $B_0, \ldots, B_{N-1}$
berp
Derivative of the Kelvin function ber
berp_zeros
First nt zeros of Kelvin function derivative berp
bessel_i
Modified Bessel function of the first kind, $I_v(z)$
bessel_i0
Modified Bessel function of the first kind of order 0, $I_0(x)$
bessel_i0e
Exponentially scaled modified Bessel function of the first kind of order 0, $e^{-|x|} I_0(x)$
bessel_i1
Modified Bessel function of the first kind of order 1, $I_1(x)$
bessel_i1e
Exponentially scaled modified Bessel function of the first kind of order 1, $e^{-|x|} I_1(x)$
bessel_i_prime
Compute the $n$th derivative of bessel_i(v, z) w.r.t. z
bessel_ie
Exponentially scaled modified Bessel function of the first kind
bessel_j
Bessel function of the first kind, $J_v(z)$
bessel_j0
Bessel function of the first kind of order 0, $J_0(x)$
bessel_j1
Bessel function of the first kind of order 1, $J_1(x)$
bessel_j_prime
Compute the $n$th derivative of bessel_j(v, z) w.r.t. z
bessel_je
Exponentially scaled Bessel function of the first kind
bessel_k
Modified Bessel function of the second kind, $K_v(z)$
bessel_k0
Modified Bessel function of the second kind of order 0, $K_0(x)$
bessel_k0e
Exponentially scaled modified Bessel function of the second kind of order 0, $e^x K_0(x)$
bessel_k1
Modified Bessel function of the second kind of order 1, $K_1(x)$
bessel_k1e
Exponentially scaled modified Bessel function of the second kind of order 1, $e^x K_1(x)$
bessel_k_prime
Compute the $n$th derivative of bessel_k(v, z) w.r.t. z
bessel_ke
Exponentially scaled modified Bessel function of the second kind
bessel_y
Bessel function of the second kind, $Y_v(z)$
bessel_y0
Bessel function of the second kind of order 0, $Y_0(x)$
bessel_y1
Bessel function of the second kind of order 1, $Y_1(x)$
bessel_y_prime
Compute the $n$th derivative of bessel_y(v, z) w.r.t. z
bessel_ye
Exponentially scaled Bessel function of the second kind
bessel_zeros
Compute $N$ zeros of Bessel functions $J_v(x)$, $J_v'(x)$, $Y_v(x)$, and $Y_v'(x)$
besselpoly
Weighted integral of the Bessel function of the first kind, $\int_0^1 x^\lambda \mathop{J}_v(2ax) \dd x$
beta
Beta function $\B(a,b)$
betainc
Regularized incomplete Beta function $\I_x(a,b)$
betaincinv
Inverse of the regularized incomplete Beta function, $y = \I_x(a, b)$
betaln
Natural logarithm of the absolute value of beta, $\ln{\abs{\B(a,b)}}$
binom
Binomial coefficient considered as a function of two real variables
boxcox
Box-Cox transformation
boxcox1p
Box-Cox transformation of 1 + x
cbrt
Cube root of $x$, $\sqrt[3]{x}$
cevalpoly
Evaluate polynomials
chdtr
CDF of the Chi-squared distribution
chdtrc
Survival function of the Chi-squared distribution
chdtri
Quantile function of the Chi-squared distribution
comb
k-combinations of n things, nCk
comb_rep
k-combinations of n things with replacement
cosdg
Cosine of angle in degrees
cosm1
$\cos(x) - 1$ for use when $x$ is near zero
cospi
$\cos(\pi z)$ for real or complex $z$
cotdg
Cotangent of the angle x given in degrees
dawsn
Dawson function sqrt(pi)/2 * exp(-z^2) * erfi(z) for real or complex input
digamma
Digamma function for real or complex input
diric
Dirichlet kernel, also known as the periodic sinc function.
ellipe
Complete elliptic integral of the second kind
ellipeinc
Incomplete elliptic integral of the second kind
ellipj
Jacobi elliptic functions
ellipk
Complete elliptic integral of the first kind
ellipkinc
Incomplete elliptic integral of the first kind
ellipkm1
Complete elliptic integral of the first kind around $m = 1$
entr
Elementwise function for computing the entropy
erf
Error function $\erf(z)$ for real or complex input
erf_zeros
Zeros of the error function erf(z) in the first quadrant of the complex plane
erfc
Complementary error function $1 - \erf(z)$ for real or complex input
erfcinv
Inverse of the complementary error function erfc(x)
erfcx
Scaled complementary error function $e^{z^2} \erfc(z)$ for real or complex input
erfi
Imaginary error function -i erf(i z) for real or complex input
erfinv
Inverse of the error function erf(x)
euler
Euler numbers $E_0, \ldots, E_{N-1}$
eval_chebyshev_t
Evaluate Chebyshev polynomial of the first kind $T_n$ at a point.
eval_chebyshev_u
Evaluate Chebyshev polynomial of the second kind $U_n$ at a point.
eval_gegenbauer
Evaluate Gegenbauer polynomial $C_n^{(\alpha)}$ at a point.
eval_genlaguerre
Evaluate generalized Laguerre polynomial $L_n^{(\alpha)}$ at a point.
eval_hermite_h
Evaluate physicists’ Hermite polynomial $H_n(x)$ at a point
eval_hermite_he
Evaluate probabilists’ (normalized) Hermite polynomial $He_n(x)$ at a point
eval_jacobi
Evaluate Jacobi polynomial $P_n^{(\alpha, \beta)}$ at a point.
eval_laguerre
Evaluate Laguerre polynomial $L_n$ at a point
eval_legendre
Evaluate Legendre polynomial $P_n$ at a point.
exp1
Exponential integral $E_1$ for real or complex input
exp2
$2^x$
exp10
$10^x$
expi
Exponential integral $Ei$ for real or complex input
expit
Expit (a.k.a. logistic sigmoid) function, $1 / (1 + e^{-x})$
expm1
$e^x - 1$ for real or complex input
expn
Generalized exponential integral $E_n(x)$
exprel
Relative error exponential, $(e^x - 1) / x$
extended_absolute_error
Extended absolute error metric between two f64 or Complex<f64> values
extended_relative_error
Extended relative error metric between two f64 or Complex<f64> values
factorial
Factorial n!
factorial_checked
Factorial n! with overflow checking
fdtr
CDF of the F distribution
fdtrc
Survival function of the F distribution
fdtri
Quantile function of the F distribution
fresnel
Fresnel integrals S(z) and C(z) for real or complex argument
fresnel_zeros
Zeros of Fresnel integrals S(z) and C(z)
gamma
Gamma function $\Gamma(z)$ for real or complex argument.
gammainc
Regularized lower incomplete gamma function $P(a,x)$
gammaincc
Regularized upper incomplete gamma function $Q(a,x)$
gammainccinv
Inverse of gammaincc
gammaincinv
Inverse of gammainc
gammaln
Logarithm of the absolute value of gamma, $\ln{\abs{\Gamma(x)}}$
gammasgn
Sign of the Gamma function, $\sgn \Gamma(x)$
gdtr
CDF of the Gamma distribution
gdtrc
Survival function of the Gamma distribution
gdtrib
Inverse of gdtr with respect to b
hankel_1
Hankel function of the first kind, $H_v^{(1)}(z)$
hankel_2
Hankel function of the second kind, $H_v^{(2)}(z)$
hankel_1_prime
Compute the $n$th derivative of hankel_1(v, z) w.r.t. z
hankel_1e
Exponentially scaled Hankel function of the first kind
hankel_2_prime
Compute the $n$th derivative of hankel_2(v, z) w.r.t. z
hankel_2e
Exponentially scaled Hankel function of the second kind
huber
Huber Loss function
hyp0f0
Hypergeometric function $_0F_0\left[\middle| z\right]$ for real or complex $z$
hyp0f1
Confluent hypergeometric limit function $_0F_1\left[b\middle| z\right]$ for real or complex $z$
hyp1f0
Hypergeometric function $_1F_0\left[a\middle| z\right]$ for real or complex $z$
hyp1f1
Kummer’s Confluent hypergeometric function $_1F_1$
hyp2f1
Gauss’ hypergeometric function $_2F_1$
hypu
Tricomi’s confluent hypergeometric function $U(a,b,x)$
inv_boxcox
Inverse of the Box-Cox transformation
inv_boxcox1p
Inverse of the Box-Cox transformation of 1 + x
it1i0k0
Integrals of modified Bessel functions of order 0
it1j0y0
Integrals of Bessel functions of order 0
it2i0k0
Integrals related to modified Bessel functions of order 0.
it2j0y0
Integrals related to Bessel functions of the first kind of order 0
it2struve0
Integral related to the Struve $H_0$ function
itmodstruve0
Integral of the modified Struve $L_0$ function
itstruve0
Integral of the Struve $H_0$ function
iv_ratio
Compute iv(v,x)/iv(v-1,x) of the modified Bessel function of the first kind
iv_ratio_c
Compute iv(v,x)/iv(v-1,x) of the modified Bessel function of the first kind
jahnke_emden_lambda
Evaluate the Jahnke-Emden Lambda function $\Lambda_v(x)$ and its derivatives
kei
Kelvin function kei
kei_zeros
First nt zeros of Kelvin function kei
keip
Derivative of the Kelvin function kei
keip_zeros
First nt zeros of Kelvin function derivative keip
kelvin
Kelvin functions as complex numbers
kelvin_zeros
First nt zeros of all Kelvin functions and their derivatives
ker
Kelvin function ker
ker_zeros
First nt zeros of Kelvin function ker
kerp
Derivative of the Kelvin function ker
kerp_zeros
First nt zeros of Kelvin function derivative kerp
kl_div
Elementwise function for computing the Kullback-Leibler divergence
kolmogc
CDF of the Kolmogorov distribution
kolmogci
Inverse of kolmogc, the quantile function of the Kolmogorov distribution
kolmogi
Inverse of kolmogorov
kolmogorov
Survival function of the Kolmogorov distribution
kolmogp
Derivative of kolmogorov
lambertw
Lambert W function.
legendre_p
Legendre polynomial of degree n
legendre_p_all
All Legendre polynomials of the 1st kind
legendre_q_all
All Legendre polynomials of the 2nd kind and their derivatives
log1mexp
Compute $\ln(1 - e^x)$
log1p
$ \log(1+z)$ for real or complex input
log1pmx
Compute $\log(1+x)-x$ for real input
log_expit
Natural logarithm of expit
log_ndtr
Logarithm of ndtr, $\ln \Phi(z)$
log_softmax
Compute the logarithm of the softmax function
log_wright_bessel
Natural logarithm of wright_bessel
logaddexp
ln(ex + ey)
logaddexp2
log2(2x + 2y)
loggamma
Principal branch of the logarithm of gamma(z)
logit
Logit function, $\ln(x / (1 - x))$
logsumexp
Compute the log of the sum of exponentials of input elements
mathieu_a
Characteristic value of even Mathieu functions
mathieu_b
Characteristic value of odd Mathieu functions
mathieu_cem
Even Mathieu function and its derivative
mathieu_even_coef
Fourier coefficients for even Mathieu and modified Mathieu functions
mathieu_modcem1
Even modified Mathieu function of the first kind and its derivative
mathieu_modcem2
Even modified Mathieu function of the second kind and its derivative
mathieu_modsem1
Odd modified Mathieu function of the first kind and its derivative
mathieu_modsem2
Odd modified Mathieu function of the second kind and its derivative
mathieu_odd_coef
Fourier coefficients for odd Mathieu and modified Mathieu functions
mathieu_sem
Odd Mathieu function and its derivative
modified_fresnel_minus
Modified Fresnel negative integrals
modified_fresnel_plus
Modified Fresnel positive integrals
multifactorial
Multifactorial n!(k) for positive k
multifactorial_checked
Multifactorial n!(k) for positive k with overflow checking
multigammaln
Log of multivariate gamma, $\ln \Gamma_d(a)$, sometimes called the generalized gamma
nbdtr
Negative binomial distribution function
nbdtrc
Negative binomial survival function
nbdtri
Negative binomial quantile function
ndtr
CDF of the standard normal distribution, $\Phi(z)$
ndtri
Inverse of ndtr, the probit function $\Phi^{-1}(p)$
ndtri_exp
Inverse of log_ndtr vs x.
oblate_aswfa
Oblate spheroidal angular function for precomputed characteristic value
oblate_aswfa_nocv
Oblate spheroidal angular function of the 1st kind and its derivative
oblate_radial1
Oblate spheroidal radial function of the 1st kind for precomputed characteristic value
oblate_radial2
Oblate spheroidal radial function of the 2nd kind for precomputed characteristic value
oblate_radial1_nocv
Oblate spheroidal radial function of the 1st kind and its derivative
oblate_radial2_nocv
Oblate spheroidal radial function of the 2nd kind and its derivative
oblate_segv
Characteristic value of oblate spheroidal function
owens_t
Owen’s T function, $T(h, a)$
pbdv
Parabolic cylinder function $D$
pbvv
Parabolic cylinder function $V$
pbwa
Parabolic cylinder function $W$
pdtr
Poisson distribution function
pdtrc
Poisson survival function
pdtri
Poisson quantile function
perm
k-permutations of n things, nPk
pmv
Associated Legendre function for $|x| \leq 1$
polygamma
Polygamma function ψ(n)(x)
pow_falling
Falling factorial $\fpow x m$
pow_rising
Rising factorial $\rpow x m$
prolate_aswfa
Prolate spheroidal angular function for precomputed characteristic value
prolate_aswfa_nocv
Prolate spheroidal angular function of the 1st kind and its derivative
prolate_radial1
Prolate spheroidal radial function of the 1st kind for precomputed characteristic value
prolate_radial2
Prolate spheroidal radial function of the 2nd kind for precomputed characteristic value
prolate_radial1_nocv
Prolate spheroidal radial function of the 1st kind and its derivative
prolate_radial2_nocv
Prolate spheroidal radial function of the 2nd kind and its derivative
prolate_segv
Characteristic value of prolate spheroidal function
pseudo_huber
Pseudo-Huber Loss function
radian
Convert from degrees to radians.
rel_entr
Elementwise function for computing relative entropy
rgamma
Reciprocal Gamma function 1 / gamma(z)
riccati_j
Compute Riccati-Bessel function of the first kind and derivatives for the first $N$ orders
riccati_y
Compute Riccati-Bessel function of the second kind and derivatives for the first $N$ orders
riemann_zeta
Riemann zeta function $\zeta(z)$ for real or complex $z$
round
Round to nearest or even integer-valued float
scaled_exp1
Scaled version of the exponential integral $E_1$ for real input
shichi
Hyperbolic sine and cosine integrals.
sici
Sine and cosine integrals.
sinc
Normalized sinc function
sindg
Sine of the angle x given in degrees.
sinpi
$\sin(\pi z)$ for real or complex $z$
smirnov
Survival function of the Kolmogorov-Smirnov distribution
smirnovc
CDF of the Kolmogorov-Smirnov distribution
smirnovci
Inverse of smirnovc
smirnovi
Inverse of smirnov
smirnovp
Derivative of smirnov
softmax
Compute the softmax function
softplus
ln(1 + ex)
spence
Spence’s function for real or complex argument, also known as the dilogarithm
sph_bessel_i
Modified spherical Bessel function of the first kind, $i_n(z)$
sph_bessel_i_prime
Derivative of sph_bessel_i, $i_n'(z)$
sph_bessel_j
Spherical Bessel function of the first kind, $j_n(z)$
sph_bessel_j_prime
Derivative of sph_bessel_j, $j_n'(z)$
sph_bessel_k
Modified spherical Bessel function of the second kind, $k_n(z)$
sph_bessel_k_prime
Derivative of sph_bessel_k, $k_n'(z)$
sph_bessel_y
Spherical Bessel function of the second kind, $y_n(z)$
sph_bessel_y_prime
Derivative of sph_bessel_y, $y_n'(z)$
sph_harm_y
Spherical harmonics
sph_harm_y_all
All spherical harmonics up to the specified degree $n$ and order $m$
sph_legendre_p
Spherical Legendre polynomial of degree n and order m
sph_legendre_p_all
All spherical Legendre polynomials of the 1st kind
stdtr
Student’s t distribution cumulative distribution function
stdtri
Inverse of stdtr
stirling2
Stirling number of the second kind S(n,k)
struve_h
Struve $H_v$ function
struve_l
Modified Struve $L_v$ function
tandg
Tangent of angle x given in degrees
tukeylambdacdf
CDF of the Tukey-Lambda distribution
voigt_profile
Voigt profile
wofz
Faddeeva function exp(-z^2) * erfc(-i z)
wright_bessel
Wright’s generalized Bessel function
wrightomega
Wright Omega function, $\omega(z)$
xlog1py
Compute $x \log(1+y)$ for real or complex input
xlogy
Compute $x \log(y)$ for real or complex input
zeta
Hurwitz zeta function $\zeta(z, q)$ for real or complex $z$
zetac
Riemann zeta function minus one, $\zeta(x) - 1$