1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use std::{
	borrow::Borrow,
	fmt,
	ops::{Add, Div, Mul, Sub},
	str::FromStr,
};

use num_bigint::{BigInt, TryFromBigIntError};
use num_traits::{Signed, Zero};

use crate::{
	lexical, Datatype, IntDatatype, IntegerDatatype, LongDatatype, NonNegativeIntegerDatatype,
	NonPositiveIntegerDatatype, ShortDatatype, UnsignedIntDatatype, UnsignedLongDatatype,
	UnsignedShortDatatype, XsdDatatype,
};

use super::{I16_MIN, I32_MIN, I64_MIN, I8_MIN, U16_MAX, U32_MAX, U64_MAX, U8_MAX};

mod non_negative_integer;
mod non_positive_integer;

pub use non_negative_integer::*;
pub use non_positive_integer::*;

/// Integer number.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[repr(transparent)]
pub struct Integer(BigInt);

impl Integer {
	/// Converts a `BigInt` reference into an `Integer` reference.
	#[inline(always)]
	pub fn from_bigint_ref(n: &BigInt) -> &Self {
		unsafe {
			// This is safe because `Integer` is a transparent wrapper around
			// `BigInt`.
			std::mem::transmute(n)
		}
	}

	#[inline(always)]
	pub fn zero() -> Self {
		Self(BigInt::zero())
	}

	#[inline(always)]
	pub fn is_zero(&self) -> bool {
		self.0.is_zero()
	}

	#[inline(always)]
	pub fn is_positive(&self) -> bool {
		self.0.is_positive()
	}

	#[inline(always)]
	pub fn is_negative(&self) -> bool {
		self.0.is_negative()
	}

	pub fn integer_type(&self) -> Option<IntegerDatatype> {
		if self.0 >= BigInt::zero() {
			if self.0 > BigInt::zero() {
				if self.0 <= *U8_MAX {
					Some(UnsignedShortDatatype::UnsignedByte.into())
				} else if self.0 <= *U16_MAX {
					Some(UnsignedIntDatatype::UnsignedShort(None).into())
				} else if self.0 <= *U32_MAX {
					Some(UnsignedLongDatatype::UnsignedInt(None).into())
				} else if self.0 <= *U64_MAX {
					Some(NonNegativeIntegerDatatype::UnsignedLong(None).into())
				} else {
					Some(NonNegativeIntegerDatatype::PositiveInteger.into())
				}
			} else {
				Some(UnsignedShortDatatype::UnsignedByte.into())
			}
		} else if self.0 >= *I8_MIN {
			Some(ShortDatatype::Byte.into())
		} else if self.0 >= *I16_MIN {
			Some(IntDatatype::Short(None).into())
		} else if self.0 >= *I32_MIN {
			Some(LongDatatype::Int(None).into())
		} else if self.0 >= *I64_MIN {
			Some(IntegerDatatype::Long(None))
		} else {
			Some(NonPositiveIntegerDatatype::NegativeInteger.into())
		}
	}

	/// Returns a lexical representation of this integer.
	#[inline(always)]
	pub fn lexical_representation(&self) -> lexical::IntegerBuf {
		unsafe {
			// This is safe because the `Display::fmt` method matches the
			// XSD lexical representation.
			lexical::IntegerBuf::new_unchecked(format!("{}", self))
		}
	}
}

impl XsdDatatype for Integer {
	#[inline(always)]
	fn type_(&self) -> Datatype {
		self.integer_type().into()
	}
}

impl From<BigInt> for Integer {
	#[inline(always)]
	fn from(value: BigInt) -> Self {
		Self(value)
	}
}

impl From<Integer> for BigInt {
	#[inline(always)]
	fn from(value: Integer) -> Self {
		value.0
	}
}

impl<'a> From<&'a lexical::Integer> for Integer {
	#[inline(always)]
	fn from(value: &'a lexical::Integer) -> Self {
		Self(value.as_str().parse().unwrap())
	}
}

impl From<lexical::IntegerBuf> for Integer {
	#[inline(always)]
	fn from(value: lexical::IntegerBuf) -> Self {
		value.as_integer().into()
	}
}

impl FromStr for Integer {
	type Err = lexical::InvalidInteger;

	#[inline(always)]
	fn from_str(s: &str) -> Result<Self, Self::Err> {
		let l = lexical::Integer::new(s)?;
		Ok(l.into())
	}
}

impl From<lexical::NonPositiveIntegerBuf> for Integer {
	#[inline(always)]
	fn from(value: lexical::NonPositiveIntegerBuf) -> Self {
		value.as_integer().into()
	}
}

impl From<NonNegativeInteger> for Integer {
	fn from(value: NonNegativeInteger) -> Self {
		let n: BigInt = value.into();
		Self(n)
	}
}

impl fmt::Display for Integer {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		self.0.fmt(f)
	}
}

impl AsRef<BigInt> for Integer {
	#[inline(always)]
	fn as_ref(&self) -> &BigInt {
		&self.0
	}
}

impl Borrow<BigInt> for Integer {
	#[inline(always)]
	fn borrow(&self) -> &BigInt {
		&self.0
	}
}

#[derive(Debug, thiserror::Error)]
#[error("integer out of supported bounds: {0}")]
pub struct IntegerOutOfTargetBounds(pub Integer);

macro_rules! from {
	{ $( $ty:ty ),* } => {
		$(
			impl From<$ty> for Integer {
				fn from(value: $ty) -> Self {
					Self(value.into())
				}
			}
		)*
	};
}

from!(u8, u16, u32, u64, usize, i8, i16, i32, i64, isize);

macro_rules! try_into {
	{ $( $ty:ty ),* } => {
		$(
			impl TryFrom<Integer> for $ty {
				type Error = IntegerOutOfTargetBounds;

				fn try_from(value: Integer) -> Result<Self, Self::Error> {
					value.0.try_into().map_err(|e: TryFromBigIntError<BigInt>| IntegerOutOfTargetBounds(Integer(e.into_original())))
				}
			}
		)*
	};
}

try_into!(u8, u16, u32, u64, usize, i8, i16, i32, i64, isize);

pub type Long = i64;

pub trait XsdLong {
	fn long_type(&self) -> Option<LongDatatype>;
}

impl XsdLong for Long {
	fn long_type(&self) -> Option<LongDatatype> {
		if (i8::MIN as i64..=i8::MAX as i64).contains(self) {
			Some(ShortDatatype::Byte.into())
		} else if (i16::MIN as i64..=i16::MAX as i64).contains(self) {
			Some(IntDatatype::Short(None).into())
		} else if (i32::MIN as i64..=i32::MAX as i64).contains(self) {
			Some(LongDatatype::Int(None))
		} else {
			None
		}
	}
}

impl XsdDatatype for Long {
	fn type_(&self) -> Datatype {
		self.long_type().into()
	}
}

pub type Int = i32;

pub trait XsdInt {
	fn int_type(&self) -> Option<IntDatatype>;
}

impl XsdInt for Int {
	fn int_type(&self) -> Option<IntDatatype> {
		if (i8::MIN as i32..=i8::MAX as i32).contains(self) {
			Some(ShortDatatype::Byte.into())
		} else if (i16::MIN as i32..=i16::MAX as i32).contains(self) {
			Some(IntDatatype::Short(None))
		} else {
			None
		}
	}
}

impl XsdDatatype for Int {
	fn type_(&self) -> Datatype {
		self.int_type().into()
	}
}

pub type Short = i16;

pub trait XsdShort {
	fn short_type(&self) -> Option<ShortDatatype>;
}

impl XsdShort for Short {
	fn short_type(&self) -> Option<ShortDatatype> {
		if (i8::MIN as i16..=i8::MAX as i16).contains(self) {
			Some(ShortDatatype::Byte)
		} else {
			None
		}
	}
}

impl XsdDatatype for Short {
	fn type_(&self) -> Datatype {
		self.short_type().into()
	}
}

pub type Byte = i8;

impl XsdDatatype for Byte {
	fn type_(&self) -> Datatype {
		ShortDatatype::Byte.into()
	}
}

macro_rules! impl_integer_arithmetic {
	{
		for $target:ty where $id:ident ( $test:expr ) {
			$( $ty:ty $([$($accessor:tt)*])? ),*
		}
	} => {
		$(
			impl Add<$ty> for $target {
				type Output = Self;

				fn add(self, rhs: $ty) -> Self::Output {
					let $id = self.0 + rhs $($($accessor)*)?;

					if !($test) {
						panic!("attempt to add with overflow")
					}

					Self($id)
				}
			}

			impl Sub<$ty> for $target {
				type Output = Self;

				fn sub(self, rhs: $ty) -> Self::Output {
					let $id = self.0 - rhs $($($accessor)*)?;

					if !($test) {
						panic!("attempt to subtract with overflow")
					}

					Self($id)
				}
			}

			impl Mul<$ty> for $target {
				type Output = Self;

				fn mul(self, rhs: $ty) -> Self::Output {
					let $id = self.0 * rhs $($($accessor)*)?;

					if !($test) {
						panic!("attempt to multiply with overflow")
					}

					Self($id)
				}
			}

			impl Div<$ty> for $target {
				type Output = Self;

				fn div(self, rhs: $ty) -> Self::Output {
					let $id = self.0 / rhs $($($accessor)*)?;

					if !($test) {
						panic!("attempt to divide with overflow")
					}

					Self($id)
				}
			}
		)*
	};
}

pub(crate) use impl_integer_arithmetic;

impl_integer_arithmetic! {
	for Integer where r (true) {
		Integer [.0], i8, i16, i32, i64, isize, u8, u16, u32, u64, usize
	}
}