1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use std::ops::Deref;
use std::{borrow::Borrow, fmt};

use num_bigint::BigInt;
use num_traits::Zero;

use crate::{
	lexical, Datatype, IntDatatype, IntegerDatatype, LongDatatype, NonNegativeIntegerDatatype,
	NonPositiveIntegerDatatype, ShortDatatype, UnsignedIntDatatype, UnsignedLongDatatype,
	UnsignedShortDatatype, XsdDatatype,
};

use super::{I16_MIN, I32_MIN, I64_MIN, I8_MIN, U16_MAX, U32_MAX, U64_MAX, U8_MAX};

mod non_negative_integer;
mod non_positive_integer;

pub use non_negative_integer::*;
pub use non_positive_integer::*;

/// Integer number.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[repr(transparent)]
pub struct Integer(BigInt);

impl Integer {
	/// Converts a `BigInt` reference into an `Integer` reference.
	#[inline(always)]
	pub fn from_bigint_ref(n: &BigInt) -> &Self {
		unsafe {
			// This is safe because `Integer` is a transparent wrapper around
			// `BigInt`.
			std::mem::transmute(n)
		}
	}

	pub fn integer_type(&self) -> Option<IntegerDatatype> {
		if self.0 >= BigInt::zero() {
			if self.0 > BigInt::zero() {
				if self.0 <= *U8_MAX {
					Some(UnsignedShortDatatype::UnsignedByte.into())
				} else if self.0 <= *U16_MAX {
					Some(UnsignedIntDatatype::UnsignedShort(None).into())
				} else if self.0 <= *U32_MAX {
					Some(UnsignedLongDatatype::UnsignedInt(None).into())
				} else if self.0 <= *U64_MAX {
					Some(NonNegativeIntegerDatatype::UnsignedLong(None).into())
				} else {
					Some(NonNegativeIntegerDatatype::PositiveInteger.into())
				}
			} else {
				Some(UnsignedShortDatatype::UnsignedByte.into())
			}
		} else if self.0 >= *I8_MIN {
			Some(ShortDatatype::Byte.into())
		} else if self.0 >= *I16_MIN {
			Some(IntDatatype::Short(None).into())
		} else if self.0 >= *I32_MIN {
			Some(LongDatatype::Int(None).into())
		} else if self.0 >= *I64_MIN {
			Some(IntegerDatatype::Long(None))
		} else {
			Some(NonPositiveIntegerDatatype::NegativeInteger.into())
		}
	}

	/// Returns a lexical representation of this integer.
	#[inline(always)]
	pub fn lexical_representation(&self) -> lexical::IntegerBuf {
		unsafe {
			// This is safe because the `Display::fmt` method matches the
			// XSD lexical representation.
			lexical::IntegerBuf::new_unchecked(format!("{}", self))
		}
	}
}

impl XsdDatatype for Integer {
	#[inline(always)]
	fn type_(&self) -> Datatype {
		self.integer_type().into()
	}
}

impl From<BigInt> for Integer {
	#[inline(always)]
	fn from(value: BigInt) -> Self {
		Self(value)
	}
}

impl From<Integer> for BigInt {
	#[inline(always)]
	fn from(value: Integer) -> Self {
		value.0
	}
}

impl<'a> From<&'a lexical::Integer> for Integer {
	#[inline(always)]
	fn from(value: &'a lexical::Integer) -> Self {
		Self(value.as_str().parse().unwrap())
	}
}

impl From<lexical::NonPositiveIntegerBuf> for Integer {
	#[inline(always)]
	fn from(value: lexical::NonPositiveIntegerBuf) -> Self {
		value.as_integer().into()
	}
}

impl From<NonNegativeInteger> for Integer {
	fn from(value: NonNegativeInteger) -> Self {
		let n: BigInt = value.into();
		Self(n)
	}
}

impl fmt::Display for Integer {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		self.0.fmt(f)
	}
}

impl AsRef<BigInt> for Integer {
	#[inline(always)]
	fn as_ref(&self) -> &BigInt {
		&self.0
	}
}

impl Borrow<BigInt> for Integer {
	#[inline(always)]
	fn borrow(&self) -> &BigInt {
		&self.0
	}
}

impl Deref for Integer {
	type Target = BigInt;

	#[inline(always)]
	fn deref(&self) -> &Self::Target {
		&self.0
	}
}

pub type Long = i64;

pub trait XsdLong {
	fn long_type(&self) -> Option<LongDatatype>;
}

impl XsdLong for Long {
	fn long_type(&self) -> Option<LongDatatype> {
		if (i8::MIN as i64..=i8::MAX as i64).contains(self) {
			Some(ShortDatatype::Byte.into())
		} else if (i16::MIN as i64..=i16::MAX as i64).contains(self) {
			Some(IntDatatype::Short(None).into())
		} else if (i32::MIN as i64..=i32::MAX as i64).contains(self) {
			Some(LongDatatype::Int(None))
		} else {
			None
		}
	}
}

impl XsdDatatype for Long {
	fn type_(&self) -> Datatype {
		self.long_type().into()
	}
}

pub type Int = i32;

pub trait XsdInt {
	fn int_type(&self) -> Option<IntDatatype>;
}

impl XsdInt for Int {
	fn int_type(&self) -> Option<IntDatatype> {
		if (i8::MIN as i32..=i8::MAX as i32).contains(self) {
			Some(ShortDatatype::Byte.into())
		} else if (i16::MIN as i32..=i16::MAX as i32).contains(self) {
			Some(IntDatatype::Short(None))
		} else {
			None
		}
	}
}

impl XsdDatatype for Int {
	fn type_(&self) -> Datatype {
		self.int_type().into()
	}
}

pub type Short = i16;

pub trait XsdShort {
	fn short_type(&self) -> Option<ShortDatatype>;
}

impl XsdShort for Short {
	fn short_type(&self) -> Option<ShortDatatype> {
		if (i8::MIN as i16..=i8::MAX as i16).contains(self) {
			Some(ShortDatatype::Byte)
		} else {
			None
		}
	}
}

impl XsdDatatype for Short {
	fn type_(&self) -> Datatype {
		self.short_type().into()
	}
}

pub type Byte = i8;

impl XsdDatatype for Byte {
	fn type_(&self) -> Datatype {
		ShortDatatype::Byte.into()
	}
}