1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
use core::future::Future;

use std::{
    collections::HashMap,
    sync::{Arc, Mutex},
};

use xitca_io::bytes::BytesMut;
use xitca_unsafe_collection::no_hash::NoHashBuilder;

use super::{
    copy::{r#Copy, CopyIn, CopyOut},
    driver::{
        codec::{self, AsParams, Encode, IntoStream, Response},
        DriverTx,
    },
    error::Error,
    prepare::Prepare,
    query::{ExecuteFuture, Query},
    session::Session,
    statement::{Statement, StatementGuarded, StatementUnnamed},
    transaction::Transaction,
    types::{Oid, ToSql, Type},
};

/// a marker trait to confirm a mut reference of Client can be borrowed from self.
///
/// this is necessary for custom [Client] new types who want to utilize [Transaction] and [CopyIn].
/// these types and their functions only work properly when [Client] is exclusively borrowed.
///
/// # Examples
/// ```rust
/// use std::sync::Arc;
///
/// use xitca_postgres::{dev::ClientBorrowMut, Client};
///
/// // a client wrapper use reference counted smart pointer.
/// // it's easy to create multiple instance of &mut SharedClient with help of cloning of smart pointer
/// // and none of them can be used correctly with Transaction nor CopyIn
/// #[derive(Clone)]
/// struct SharedClient(Arc<Client>);
///
/// // client new type has to impl this trait to mark they can truly offer a mutable reference to Client
/// impl ClientBorrowMut for SharedClient {
///     fn _borrow_mut(&mut self) -> &mut Client {
///         panic!("you can't safely implement this trait with SharedClient. and Transaction::new will cause a panic with it")
///     }
/// }
///
/// // another client wrapper without indirect
/// struct ExclusiveClient(Client);
///
/// // trait can be implemented correctly. marking this new type can be accept by Transaction and CopyIn
/// impl ClientBorrowMut for ExclusiveClient {
///     fn _borrow_mut(&mut self) -> &mut Client {
///         &mut self.0
///     }
/// }
/// ```
///
/// [Transaction]: crate::transaction::Transaction
/// [CopyIn]: crate::copy::CopyIn
pub trait ClientBorrowMut {
    fn _borrow_mut(&mut self) -> &mut Client;
}

/// Client is a handler type for [`Driver`]. it interacts with latter using channel and message for IO operation
/// and de/encoding of postgres protocol in byte format.
///
/// Client expose a set of high level API to make the interaction represented in Rust function and types.
///
/// # Lifetime
/// Client and [`Driver`] have a dependent lifetime where either side can trigger the other part to shutdown.
/// From Client side it's in the form of dropping ownership.
/// ## Examples
/// ```
/// # use core::future::IntoFuture;
/// # use xitca_postgres::{error::Error, Config, Postgres};
/// # async fn shut_down(cfg: Config) -> Result<(), Error> {
/// // connect to a database and spawn driver as async task
/// let (cli, drv) = Postgres::new(cfg).connect().await?;
/// let handle = tokio::spawn(drv.into_future());
///
/// // drop client after finished usage
/// drop(cli);
///
/// // client would notify driver to shutdown when it's dropped.
/// // await on the handle would return a Result of the shutdown outcome from driver side.  
/// let _ = handle.await.unwrap();
///
/// # Ok(())
/// # }
/// ```
///
/// [`Driver`]: crate::driver::Driver
pub struct Client {
    pub(crate) tx: DriverTx,
    pub(crate) cache: Box<ClientCache>,
}

pub(crate) struct ClientCache {
    session: Session,
    type_info: Mutex<CachedTypeInfo>,
}

/// A cache of type info and prepared statements for fetching type info
/// (corresponding to the queries in the [prepare](prepare) module).
struct CachedTypeInfo {
    /// A statement for basic information for a type from its
    /// OID. Corresponds to [TYPEINFO_QUERY](prepare::TYPEINFO_QUERY) (or its
    /// fallback).
    typeinfo: Option<Statement>,
    /// A statement for getting information for a composite type from its OID.
    /// Corresponds to [TYPEINFO_QUERY](prepare::TYPEINFO_COMPOSITE_QUERY).
    typeinfo_composite: Option<Statement>,
    /// A statement for getting information for a composite type from its OID.
    /// Corresponds to [TYPEINFO_QUERY](prepare::TYPEINFO_COMPOSITE_QUERY) (or
    /// its fallback).
    typeinfo_enum: Option<Statement>,
    /// Cache of types already looked up.
    types: HashMap<Oid, Type, NoHashBuilder>,
}

impl Client {
    /// Creates a new prepared statement.
    ///
    /// Prepared statements can be executed repeatedly, and may contain query parameters (indicated by `$1`, `$2`, etc),
    /// which are set when executed. Prepared statements can only be used with the connection that created them.
    pub async fn prepare(&self, query: &str, types: &[Type]) -> Result<StatementGuarded<Self>, Error> {
        self._prepare(query, types).await.map(|stmt| stmt.into_guarded(self))
    }

    /// Executes a statement, returning an async stream of the resulting rows.
    ///
    /// A statement may contain parameters, specified by `$n`, where `n` is the index of the parameter of the list
    /// provided, 1-indexed.
    ///
    /// If the same statement will be repeatedly executed (perhaps with different query parameters), consider preparing
    /// the statement up front with [Client::prepare].
    #[inline]
    pub fn query<'a, S>(&self, stmt: S, params: &[&(dyn ToSql + Sync)]) -> Result<S::RowStream<'a>, Error>
    where
        S: Encode + IntoStream + 'a,
    {
        self._query(stmt, params)
    }

    /// The maximally flexible version of [`Client::query`].
    ///
    /// A statement may contain parameters, specified by `$n`, where `n` is the index of the parameter of the list
    /// provided, 1-indexed.
    ///
    /// If the same statement will be repeatedly executed (perhaps with different query parameters), consider preparing
    /// the statement up front with [`Client::prepare`].
    #[inline]
    pub fn query_raw<'a, S, I>(&self, stmt: S, params: I) -> Result<S::RowStream<'a>, Error>
    where
        S: Encode + IntoStream + 'a,
        I: AsParams,
    {
        self._query_raw(stmt, params)
    }

    /// Executes a statement, returning the number of rows modified.
    ///
    /// A statement may contain parameters, specified by `$n`, where `n` is the index of the parameter of the list
    /// provided, 1-indexed.
    ///
    /// If the same statement will be repeatedly executed (perhaps with different query parameters), consider preparing
    /// the statement up front with [Client::prepare].
    ///
    /// If the statement does not modify any rows (e.g. `SELECT`), 0 is returned.
    #[inline]
    pub fn execute<S>(&self, stmt: S, params: &[&(dyn ToSql + Sync)]) -> ExecuteFuture
    where
        S: Encode,
    {
        self._execute(stmt, params)
    }

    /// The maximally flexible version of [`Client::execute`].
    ///
    /// A statement may contain parameters, specified by `$n`, where `n` is the index of the parameter of the list
    /// provided, 1-indexed.
    ///
    /// If the same statement will be repeatedly executed (perhaps with different query parameters), consider preparing
    /// the statement up front with [Client::prepare].
    #[inline]
    pub fn execute_raw<S, I>(&self, stmt: S, params: I) -> ExecuteFuture
    where
        S: Encode,
        I: AsParams,
    {
        self._execute_raw(stmt, params)
    }

    /// Executes a sequence of SQL statements using the simple query protocol, returning async stream of rows.
    ///
    /// Statements should be separated by semicolons. If an error occurs, execution of the sequence will stop at that
    /// point. The simple query protocol returns the values in rows as strings rather than in their binary encodings,
    /// so the associated row type doesn't work with the `FromSql` trait. Rather than simply returning a list of the
    /// rows, this method returns a list of an enum which indicates either the completion of one of the commands,
    /// or a row of data. This preserves the framing between the separate statements in the request.
    ///
    /// # Warning
    ///
    /// Prepared statements should be use for any query which contains user-specified data, as they provided the
    /// functionality to safely embed that data in the request. Do not form statements via string concatenation and pass
    /// them to this method!
    #[inline]
    pub fn query_simple(&self, stmt: &str) -> Result<<&str as IntoStream>::RowStream<'_>, Error> {
        self.query_raw::<_, crate::ZeroParam>(stmt, [])
    }

    #[inline]
    pub fn execute_simple(&self, stmt: &str) -> ExecuteFuture {
        self.execute_raw::<_, crate::ZeroParam>(stmt, [])
    }

    /// Embed prepare statement to the query request itself. Meaning query would finish in one round trip to database.
    /// However it should also be noted that the client type must be referenced during the whole progress and associated
    /// client must be kept around util streaming is finished.
    #[inline]
    pub fn query_unnamed<'a>(
        &'a self,
        stmt: &'a str,
        types: &'a [Type],
        params: &[&(dyn ToSql + Sync)],
    ) -> Result<<StatementUnnamed<'a, Self> as IntoStream>::RowStream<'a>, Error> {
        self.query(Statement::unnamed(self, stmt, types), params)
    }

    /// start a transaction
    #[inline]
    pub fn transaction(&mut self) -> impl Future<Output = Result<Transaction<Self>, Error>> + Send {
        Transaction::<Self>::builder().begin(self)
    }

    /// Executes a `COPY FROM STDIN` statement, returning a sink used to write the copy data.
    ///
    /// PostgreSQL does not support parameters in `COPY` statements, so this method does not take any. The copy *must*
    /// be explicitly completed via [`CopyIn::finish`]. If it is not, the copy will be aborted.
    #[inline]
    pub fn copy_in(&mut self, stmt: &Statement) -> impl Future<Output = Result<CopyIn<Self>, Error>> + Send {
        CopyIn::new(self, stmt)
    }

    /// Executes a `COPY TO STDOUT` statement, returning async stream of the resulting data.
    ///
    /// PostgreSQL does not support parameters in `COPY` statements, so this method does not take any.
    #[inline]
    pub async fn copy_out(&self, stmt: &Statement) -> Result<CopyOut, Error> {
        CopyOut::new(self, stmt).await
    }

    /// Constructs a cancellation token that can later be used to request cancellation of a query running on the
    /// connection associated with this client.
    pub fn cancel_token(&self) -> Session {
        Session::clone(&self.cache.session)
    }

    /// a lossy hint of running state of io driver. an io driver shutdown can happen
    /// at the same time this api is called.
    pub fn closed(&self) -> bool {
        self.tx.is_closed()
    }

    pub fn typeinfo(&self) -> Option<Statement> {
        self.cache.type_info.lock().unwrap().typeinfo.clone()
    }

    pub fn set_typeinfo(&self, statement: &Statement) {
        self.cache.type_info.lock().unwrap().typeinfo = Some(statement.clone());
    }

    pub fn typeinfo_composite(&self) -> Option<Statement> {
        self.cache.type_info.lock().unwrap().typeinfo_composite.clone()
    }

    pub fn set_typeinfo_composite(&self, statement: &Statement) {
        self.cache.type_info.lock().unwrap().typeinfo_composite = Some(statement.clone());
    }

    pub fn typeinfo_enum(&self) -> Option<Statement> {
        self.cache.type_info.lock().unwrap().typeinfo_enum.clone()
    }

    pub fn set_typeinfo_enum(&self, statement: &Statement) {
        self.cache.type_info.lock().unwrap().typeinfo_enum = Some(statement.clone());
    }

    pub fn type_(&self, oid: Oid) -> Option<Type> {
        self.cache.type_info.lock().unwrap().types.get(&oid).cloned()
    }

    pub fn set_type(&self, oid: Oid, type_: &Type) {
        self.cache.type_info.lock().unwrap().types.insert(oid, type_.clone());
    }

    /// Clears the client's type information cache.
    ///
    /// When user-defined types are used in a query, the client loads their definitions from the database and caches
    /// them for the lifetime of the client. If those definitions are changed in the database, this method can be used
    /// to flush the local cache and allow the new, updated definitions to be loaded.
    pub fn clear_type_cache(&self) {
        self.cache.type_info.lock().unwrap().types.clear();
    }

    pub(crate) fn new(tx: DriverTx, session: Session) -> Self {
        Self {
            tx,
            cache: Box::new(ClientCache {
                session,
                type_info: Mutex::new(CachedTypeInfo {
                    typeinfo: None,
                    typeinfo_composite: None,
                    typeinfo_enum: None,
                    types: HashMap::default(),
                }),
            }),
        }
    }
}

impl ClientBorrowMut for Client {
    fn _borrow_mut(&mut self) -> &mut Client {
        self
    }
}

impl Prepare for Arc<Client> {
    fn _get_type(&self, oid: Oid) -> crate::BoxedFuture<'_, Result<Type, Error>> {
        Client::_get_type(self, oid)
    }
}

impl Query for Arc<Client> {
    #[inline]
    fn _send_encode_query<S, I>(&self, stmt: S, params: I) -> Result<Response, Error>
    where
        S: Encode,
        I: AsParams,
    {
        Client::_send_encode_query(self, stmt, params)
    }
}

impl Query for Client {
    #[inline]
    fn _send_encode_query<S, I>(&self, stmt: S, params: I) -> Result<Response, Error>
    where
        S: Encode,
        I: AsParams,
    {
        codec::send_encode_query(&self.tx, stmt, params)
    }
}

impl r#Copy for Client {
    #[inline]
    fn send_one_way<F>(&self, func: F) -> Result<(), Error>
    where
        F: FnOnce(&mut BytesMut) -> Result<(), Error>,
    {
        self.tx.send_one_way(func)
    }
}

impl Drop for Client {
    fn drop(&mut self) {
        // convert leaked statements to guarded statements.
        // this is to cancel the statement on client go away.
        let (type_info, typeinfo_composite, typeinfo_enum) = {
            let cache = self.cache.type_info.get_mut().unwrap();
            (
                cache.typeinfo.take(),
                cache.typeinfo_composite.take(),
                cache.typeinfo_enum.take(),
            )
        };

        if let Some(stmt) = type_info {
            drop(stmt.into_guarded(&*self));
        }

        if let Some(stmt) = typeinfo_composite {
            drop(stmt.into_guarded(&*self));
        }

        if let Some(stmt) = typeinfo_enum {
            drop(stmt.into_guarded(&*self));
        }
    }
}