1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! XDR record marking
//!
//! This module implements wrappers for `Write` and `BufRead` which
//! implement "Record Marking" from RFC1831, used for encoding XDR
//! structures onto a bytestream such as TCP.
//!
//! The format is simple - each record is broken up into one or more
//! record fragments. Each record fragment is prefixed with a 32-bit
//! big-endian value. The low 31 bits is the fragment size, and the
//! top bit is the "end of record" marker, indicating the last
//! fragment of the record.
//!
//! There's no magic number or other way to determine whether a stream
//! is using record marking; both ends must agree.
use std::io::{self, Read, BufRead, Write};
use std::cmp::min;
use byteorder;

use super::{unpack, pack, Error};

const LAST_REC: u32 = 1u32 << 31;

fn mapioerr(xdrerr: Error) -> io::Error {
    match xdrerr {
        Error::IOError(ioerr) => ioerr,
        other => io::Error::new(io::ErrorKind::Other, other),
    }
}

/// Read records from a bytestream.
///
/// Reads will read up to the end of the current fragment, and not
/// beyond. The `BufRead` trait doesn't otherwise allow for record
/// boundaries to be deliniated. Callers can use the `eor` method to
/// determine record ends.
pub struct XdrRecordReader<R: BufRead> {
    size: usize,                // record size
    consumed: usize,            // bytes consumed
    eor: bool,                  // is last record

    reader: R,                  // reader
}

impl<R: BufRead> XdrRecordReader<R> {
    /// Wrapper a record reader around an existing implementation of
    /// `BufRead`, such as `BufReader`.
    pub fn new(rd: R) -> XdrRecordReader<R> {
        XdrRecordReader {
            size: 0,
            consumed: 0,
            eor: false,
            reader: rd
        }
    }

    fn nextrec(&mut self) -> io::Result<bool> {
        assert_eq!(self.consumed, self.size);

        let rechdr: u32 =
            match unpack(&mut self.reader) {
                Ok(v) => v,
                Err(Error::Byteorder(byteorder::Error::UnexpectedEOF)) => return Ok(true),
                Err(e) => return Err(mapioerr(e)),
            };

        self.size = (rechdr & !LAST_REC) as usize;
        self.consumed = 0;
        self.eor = (rechdr & LAST_REC) != 0;

        Ok(false)
    }

    fn totremains(&self) -> usize { self.size - self.consumed }

    /// Current fragment is the end of the record.
    pub fn eor(&self) -> bool {
        self.eor
    }
}

impl<R: BufRead> Read for XdrRecordReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let nread = {
            let data = try!(self.fill_buf());
            let len = min(buf.len(), data.len());

            try!((&data[..len]).read(buf))
        };

        self.consume(nread);
        Ok(nread)
    }
}

impl<R: BufRead> BufRead for XdrRecordReader<R> {
    fn fill_buf(&mut self) -> io::Result<&[u8]> {
        while self.totremains() == 0 {
            if try!(self.nextrec()) {
                return Ok(&[])
            }
        }

        let remains = self.totremains();
        let data = try!(self.reader.fill_buf());
        Ok(&data[..min(data.len(), remains)])
    }

    fn consume(&mut self, sz: usize) {
        assert!(sz <= self.totremains());
        self.consumed += sz;
        self.reader.consume(sz);
    }
}

const WRBUF: usize = 65536;

/// Write records into a bytestream.
///
/// Flushes the current buffer as end of record when destroyed.
pub struct XdrRecordWriter<W: Write> {
    buf: Vec<u8>,
    bufsz: usize,
    writer: W,
}

impl<W: Write> XdrRecordWriter<W> {
    /// Create a new `XdrRecordWriter` wrapped around a `Write`
    /// implementation, using a default buffer size (64k).
    pub fn new(w: W) -> XdrRecordWriter<W> {
        XdrRecordWriter::with_buffer(w, WRBUF)
    }

    /// Create an instance with a specific buffer size. Panics if the
    /// size is zero.
    pub fn with_buffer(w: W, bufsz: usize) -> XdrRecordWriter<W> {
        if bufsz == 0 { panic!("bufsz must be non-zero") }
        XdrRecordWriter {
            buf: Vec::with_capacity(bufsz),
            bufsz: bufsz,
            writer: w
        }
    }

    /// Flush the current buffer. If `eor` is true, the end of record
    /// marker is set.
    pub fn flush_eor(&mut self, eor: bool) -> io::Result<()> {
        if !eor && self.buf.len() == 0 { return Ok(()) }

        let mut rechdr = self.buf.len() as u32;
        if eor { rechdr |= LAST_REC };

        try!(pack(&rechdr, &mut self.writer).map_err(mapioerr));
        let _ = try!(self.writer.write_all(&self.buf).map(|_| ()));
        self.buf.truncate(0);

        self.writer.flush()
    }
}

impl<W: Write> Drop for XdrRecordWriter<W> {
    fn drop(&mut self) {
        let _ = self.flush_eor(true);
    }
}

impl<W: Write> Write for XdrRecordWriter<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let mut off = 0;

        while off < buf.len() {
            let chunk = &buf[off..off+min(buf.len() - off, self.bufsz)];
            if self.buf.len() + chunk.len() > self.bufsz {
                try!(self.flush())
            }

            self.buf.extend(chunk);
            off += chunk.len();
        }

        Ok(off)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.flush_eor(false)
    }   
}

#[cfg(test)]
mod test {
    use std::io::{Read, Write, Cursor};
    use super::*;

    #[test]
    fn recread_full() {
        let inbuf = vec![128, 0, 0, 10,  0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        let cur = Cursor::new(inbuf);

        let mut recread = XdrRecordReader::new(cur);
        let mut buf = vec![0; 20];

        assert_eq!(recread.read(&mut buf[..]).unwrap(), 10);
        assert_eq!(buf, vec![0,1,2,3,4,5,6,7,8,9, 0,0,0,0,0,0,0,0,0,0]);
        assert!(recread.eor());
    }

    #[test]
    fn recread_short() {
        let inbuf = vec![128, 0, 0, 10,  0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        let cur = Cursor::new(inbuf);

        let mut recread = XdrRecordReader::new(cur);
        let mut buf = vec![0; 5];

        assert_eq!(recread.read(&mut buf[..]).unwrap(), 5);
        assert!(recread.eor());
        assert_eq!(buf, vec![0,1,2,3,4]);

        assert_eq!(recread.read(&mut buf[..]).unwrap(), 5);
        assert!(recread.eor());
        assert_eq!(buf, vec![5,6,7,8,9]);
    }

    #[test]
    fn recread_half() {
        let inbuf = vec![  0, 0, 0, 5,  0, 1, 2, 3, 4,
                           128, 0, 0, 5,  5, 6, 7, 8, 9];
        let cur = Cursor::new(inbuf);

        let mut recread = XdrRecordReader::new(cur);
        let mut buf = vec![0; 10];

        assert_eq!(recread.read(&mut buf[..]).unwrap(), 5);
        assert_eq!(buf, vec![0,1,2,3,4, 0,0,0,0,0]);
        assert!(!recread.eor());

        assert_eq!(recread.read(&mut buf[..]).unwrap(), 5);
        assert_eq!(buf, vec![5,6,7,8,9, 0,0,0,0,0]);
        assert!(recread.eor());
    }

    #[test]
    fn read_zerorec() {
        let inbuf = vec![0, 0, 0, 0,
                         0, 0, 0, 0,
                         128, 0, 0, 0];

        let cur = Cursor::new(inbuf);
        let mut recread = XdrRecordReader::new(cur);

        let mut buf = [0; 100];
        assert_eq!(recread.read(&mut buf).unwrap(), 0);
        assert!(recread.eor());
    }

    #[test]
    #[should_panic(expected="must be non-zero")]
    fn zerosz() {
        let buf = Vec::new();
        let _ = XdrRecordWriter::with_buffer(buf, 0);
    }

    #[test]
    fn smallrec() {
        let mut buf = Vec::new();

        {
            let mut xw = XdrRecordWriter::new(&mut buf);

            assert_eq!(write!(xw, "hello").unwrap(), ());
        }

        assert_eq!(buf, vec![128, 0, 0, 5,  104, 101, 108, 108, 111])
    }

    #[test]
    fn largerec() {
        let mut buf = Vec::new();

        {
            let mut xw = XdrRecordWriter::with_buffer(&mut buf, 3);

            assert_eq!(write!(xw, "hello").unwrap(), ());
        }

        assert_eq!(buf, vec![  0, 0, 0, 3,  104, 101, 108,
                               128, 0, 0, 2,  108, 111])
    }

    #[test]
    fn largerec_flush() {
        let mut buf = Vec::new();

        {
            let mut xw = XdrRecordWriter::with_buffer(&mut buf, 10);

            assert_eq!(write!(xw, "hel").unwrap(), ());
            xw.flush().unwrap();
            assert_eq!(write!(xw, "lo").unwrap(), ());
            xw.flush().unwrap();
        }

        assert_eq!(buf, vec![  0, 0, 0, 3,  104, 101, 108,
                               0, 0, 0, 2,  108, 111,
                               128, 0, 0, 0])
    }
}