1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
//! Misc utility functions
/// Iterator that iterates over a vector of iterators simultaneously.
///
/// Adapted from <https://stackoverflow.com/a/55292215>
pub struct MultiZip<I: Iterator>(Vec<I>);
impl<I: Iterator> MultiZip<I> {
/// Create a new MultiZip from a vector of iterators
pub fn new(vec_of_iters: Vec<I>) -> Self {
Self(vec_of_iters)
}
}
impl<I: Iterator> Iterator for MultiZip<I> {
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
self.0.iter_mut().map(Iterator::next).collect()
}
}
/// Read next or previous, wrapping if we go out of bounds.
///
/// This is particularly useful when porting from Python where reading
/// idx - 1, with -1 meaning last, is common.
pub trait WrappingGet<T> {
fn wrapping_next(&self, idx: usize) -> &T;
fn wrapping_prev(&self, idx: usize) -> &T;
}
impl<T> WrappingGet<T> for &[T] {
fn wrapping_next(&self, idx: usize) -> &T {
&self[match idx {
_ if idx == self.len() - 1 => 0,
_ => idx + 1,
}]
}
fn wrapping_prev(&self, idx: usize) -> &T {
&self[match idx {
_ if idx == 0 => self.len() - 1,
_ => idx - 1,
}]
}
}
/// Compare two floats for equality using relative and absolute tolerances.
///
/// This is useful when porting from Python where `math.isclose` is common.
///
/// References:
/// - [PEP425](https://peps.python.org/pep-0485/)
/// - [math.isclose](https://docs.python.org/3/library/math.html#math.isclose)
#[derive(Clone, Copy, Debug)]
pub struct FloatComparator {
// TODO: Make it generic over T: Float? Need to add num-traits as a dependency
rel_tol: f64,
abs_tol: f64,
}
impl FloatComparator {
/// Create a new FloatComparator with the specified relative and absolute tolerances.
pub fn new(rel_tol: f64, abs_tol: f64) -> Self {
Self { rel_tol, abs_tol }
}
#[inline]
/// Return true if a and b are close according to the specified tolerances.
pub fn isclose(self, a: f64, b: f64) -> bool {
if a == b {
return true;
}
if !a.is_finite() || !b.is_finite() {
return false;
}
// The https://peps.python.org/pep-0485/ describes the algorithm used as:
// abs(a-b) <= max( rel_tol * max(abs(a), abs(b)), abs_tol )
// In Rust, that would literally be:
// diff <= f64::max(self.rel_tol * f64::max(f64::abs(a), f64::abs(b)), self.abs_tol)
// However below I use || instead of max(), since the logic works out the same and
// should be a bit faster. In the PEP it's referred to as Boost's 'weak' formulation.
let diff = (a - b).abs();
diff <= (self.rel_tol * b).abs() || diff <= (self.rel_tol * a).abs() || diff <= self.abs_tol
}
}
impl Default for FloatComparator {
/// Create a new FloatComparator with `rel_to=1e-9` and `abs_tol=0.0`.
fn default() -> Self {
// same defaults as Python's math.isclose so we can match fontTools
Self {
rel_tol: 1e-9,
abs_tol: 0.0,
}
}
}
/// Compare two floats for equality using the default FloatComparator.
///
/// To use different relative or absolute tolerances, create a FloatComparator
/// and use its `isclose` method.
pub fn isclose(a: f64, b: f64) -> bool {
FloatComparator::default().isclose(a, b)
}