1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! [`async_std::channel`] re-exports and shims
use crate::id::Id;
pub use async_channel::{
    bounded, unbounded, Receiver, RecvError, SendError, Sender, TryRecvError, TrySendError,
};
use std::{
    collections::HashMap,
    marker::PhantomData,
    sync::{Arc, Mutex},
};
use thiserror::Error;

#[derive(Error, Debug)]
pub enum ChannelError<T> {
    #[error(transparent)]
    SendError(#[from] SendError<T>),
    #[error(transparent)]
    RecvError(#[from] RecvError),
    #[error(transparent)]
    SerdeWasmBindgen(#[from] serde_wasm_bindgen::Error),
    #[error("try_send() error during multiplexer broadcast")]
    BroadcastTrySendError,
}

/// Creates a oneshot channel (bounded channel with a limit of 1 message)
pub fn oneshot<T>() -> (Sender<T>, Receiver<T>) {
    bounded(1)
}

#[derive(Debug, Clone)]
pub struct DuplexChannel<T = (), R = ()> {
    pub request: Channel<T>,
    pub response: Channel<R>,
}

impl<T, R> DuplexChannel<T, R> {
    pub fn unbounded() -> Self {
        Self {
            request: Channel::unbounded(),
            response: Channel::unbounded(),
        }
    }

    pub fn oneshot() -> Self {
        Self {
            request: Channel::oneshot(),
            response: Channel::oneshot(),
        }
    }

    pub async fn signal(&self, msg: T) -> std::result::Result<R, ChannelError<T>> {
        self.request.sender.send(msg).await?;
        self.response
            .receiver
            .recv()
            .await
            .map_err(|err| err.into())
    }
}

/// [`Channel`] struct that combines [`async_std::channel::Sender`] and
/// [`async_std::channel::Receiver`] into a single struct with `sender`
/// and `receiver` members.
#[derive(Debug, Clone)]
pub struct Channel<T = ()> {
    pub sender: Sender<T>,
    pub receiver: Receiver<T>,
}

impl<T> Channel<T> {
    pub fn unbounded() -> Self {
        let (sender, receiver) = unbounded();
        Self { sender, receiver }
    }

    pub fn bounded(cap: usize) -> Self {
        let (sender, receiver) = bounded(cap);
        Self { sender, receiver }
    }

    pub fn oneshot() -> Self {
        let (sender, receiver) = bounded(1);
        Self { sender, receiver }
    }

    pub fn drain(&self) -> std::result::Result<(), TryRecvError> {
        while !self.receiver.is_empty() {
            self.receiver.try_recv()?;
        }
        Ok(())
    }

    pub async fn recv(&self) -> Result<T, RecvError> {
        self.receiver.recv().await
    }

    pub fn try_recv(&self) -> Result<T, TryRecvError> {
        self.receiver.try_recv()
    }

    pub async fn send(&self, msg: T) -> Result<(), SendError<T>> {
        self.sender.send(msg).await
    }

    pub fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
        self.sender.try_send(msg)
    }

    pub fn len(&self) -> usize {
        self.receiver.len()
    }

    pub fn is_empty(&self) -> bool {
        self.receiver.is_empty()
    }

    pub fn receiver_count(&self) -> usize {
        self.sender.receiver_count()
    }

    pub fn sender_count(&self) -> usize {
        self.sender.sender_count()
    }

    pub fn iter(&self) -> ChannelIterator<T> {
        ChannelIterator::new(self.receiver.clone())
    }
}

pub struct ChannelIterator<T> {
    receiver: Receiver<T>,
}

impl<T> ChannelIterator<T> {
    pub fn new(receiver: Receiver<T>) -> Self {
        ChannelIterator { receiver }
    }
}

impl<T> Iterator for ChannelIterator<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        if self.receiver.is_empty() {
            None
        } else {
            self.receiver.try_recv().ok()
        }
    }
}

/// A simple channel Multiplexer that broadcasts to multiple registered receivers.
#[derive(Clone)]
pub struct Multiplexer<T>
where
    T: Clone + Send + Sync + 'static,
{
    pub channels: Arc<Mutex<HashMap<Id, Sender<T>>>>,
    t: PhantomData<T>,
}

impl<T> Default for Multiplexer<T>
where
    T: Clone + Send + Sync + 'static,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<T> Multiplexer<T>
where
    T: Clone + Send + Sync + 'static,
{
    pub fn new() -> Multiplexer<T> {
        Multiplexer {
            channels: Arc::new(Mutex::new(HashMap::default())),
            t: PhantomData,
        }
    }

    pub fn register_event_channel(&self) -> (Id, Sender<T>, Receiver<T>) {
        let (sender, receiver) = unbounded();
        let id = Id::new();
        self.channels.lock().unwrap().insert(id, sender.clone());
        (id, sender, receiver)
    }

    pub fn unregister_event_channel(&self, id: Id) {
        self.channels.lock().unwrap().remove(&id);
    }

    pub async fn broadcast(&self, event: T) -> Result<(), ChannelError<T>> {
        let channels = self.channels.lock().unwrap();
        for (_, sender) in channels.iter() {
            match sender.try_send(event.clone()) {
                Ok(_) => {}
                Err(_err) => {
                    // log_error!(
                    //     "Multiplexer: error multiplexing the event {:?}: {:?}",
                    //     event.clone(),
                    //     err,
                    // );
                    return Err(ChannelError::BroadcastTrySendError);
                }
            }
        }

        Ok(())
    }
}