wit_bindgen_core/abi.rs
1use std::fmt;
2use std::iter;
3
4pub use wit_parser::abi::{AbiVariant, FlatTypes, WasmSignature, WasmType};
5use wit_parser::{
6 align_to_arch, Alignment, ArchitectureSize, ElementInfo, Enum, Flags, FlagsRepr, Function,
7 Handle, Int, Record, Resolve, Result_, SizeAlign, Tuple, Type, TypeDefKind, TypeId, Variant,
8};
9
10// Helper macro for defining instructions without having to have tons of
11// exhaustive `match` statements to update
12macro_rules! def_instruction {
13 (
14 $( #[$enum_attr:meta] )*
15 pub enum $name:ident<'a> {
16 $(
17 $( #[$attr:meta] )*
18 $variant:ident $( {
19 $($field:ident : $field_ty:ty $(,)* )*
20 } )?
21 :
22 [$num_popped:expr] => [$num_pushed:expr],
23 )*
24 }
25 ) => {
26 $( #[$enum_attr] )*
27 pub enum $name<'a> {
28 $(
29 $( #[$attr] )*
30 $variant $( {
31 $(
32 $field : $field_ty,
33 )*
34 } )? ,
35 )*
36 }
37
38 impl $name<'_> {
39 /// How many operands does this instruction pop from the stack?
40 #[allow(unused_variables)]
41 pub fn operands_len(&self) -> usize {
42 match self {
43 $(
44 Self::$variant $( {
45 $(
46 $field,
47 )*
48 } )? => $num_popped,
49 )*
50 }
51 }
52
53 /// How many results does this instruction push onto the stack?
54 #[allow(unused_variables)]
55 pub fn results_len(&self) -> usize {
56 match self {
57 $(
58 Self::$variant $( {
59 $(
60 $field,
61 )*
62 } )? => $num_pushed,
63 )*
64 }
65 }
66 }
67 };
68}
69
70def_instruction! {
71 #[derive(Debug)]
72 pub enum Instruction<'a> {
73 /// Acquires the specified parameter and places it on the stack.
74 /// Depending on the context this may refer to wasm parameters or
75 /// interface types parameters.
76 GetArg { nth: usize } : [0] => [1],
77
78 // Integer const/manipulation instructions
79
80 /// Pushes the constant `val` onto the stack.
81 I32Const { val: i32 } : [0] => [1],
82 /// Casts the top N items on the stack using the `Bitcast` enum
83 /// provided. Consumes the same number of operands that this produces.
84 Bitcasts { casts: &'a [Bitcast] } : [casts.len()] => [casts.len()],
85 /// Pushes a number of constant zeros for each wasm type on the stack.
86 ConstZero { tys: &'a [WasmType] } : [0] => [tys.len()],
87
88 // Memory load/store instructions
89
90 /// Pops a pointer from the stack and loads a little-endian `i32` from
91 /// it, using the specified constant offset.
92 I32Load { offset: ArchitectureSize } : [1] => [1],
93 /// Pops a pointer from the stack and loads a little-endian `i8` from
94 /// it, using the specified constant offset. The value loaded is the
95 /// zero-extended to 32-bits
96 I32Load8U { offset: ArchitectureSize } : [1] => [1],
97 /// Pops a pointer from the stack and loads a little-endian `i8` from
98 /// it, using the specified constant offset. The value loaded is the
99 /// sign-extended to 32-bits
100 I32Load8S { offset: ArchitectureSize } : [1] => [1],
101 /// Pops a pointer from the stack and loads a little-endian `i16` from
102 /// it, using the specified constant offset. The value loaded is the
103 /// zero-extended to 32-bits
104 I32Load16U { offset: ArchitectureSize } : [1] => [1],
105 /// Pops a pointer from the stack and loads a little-endian `i16` from
106 /// it, using the specified constant offset. The value loaded is the
107 /// sign-extended to 32-bits
108 I32Load16S { offset: ArchitectureSize } : [1] => [1],
109 /// Pops a pointer from the stack and loads a little-endian `i64` from
110 /// it, using the specified constant offset.
111 I64Load { offset: ArchitectureSize } : [1] => [1],
112 /// Pops a pointer from the stack and loads a little-endian `f32` from
113 /// it, using the specified constant offset.
114 F32Load { offset: ArchitectureSize } : [1] => [1],
115 /// Pops a pointer from the stack and loads a little-endian `f64` from
116 /// it, using the specified constant offset.
117 F64Load { offset: ArchitectureSize } : [1] => [1],
118
119 /// Like `I32Load` or `I64Load`, but for loading pointer values.
120 PointerLoad { offset: ArchitectureSize } : [1] => [1],
121 /// Like `I32Load` or `I64Load`, but for loading array length values.
122 LengthLoad { offset: ArchitectureSize } : [1] => [1],
123
124 /// Pops a pointer from the stack and then an `i32` value.
125 /// Stores the value in little-endian at the pointer specified plus the
126 /// constant `offset`.
127 I32Store { offset: ArchitectureSize } : [2] => [0],
128 /// Pops a pointer from the stack and then an `i32` value.
129 /// Stores the low 8 bits of the value in little-endian at the pointer
130 /// specified plus the constant `offset`.
131 I32Store8 { offset: ArchitectureSize } : [2] => [0],
132 /// Pops a pointer from the stack and then an `i32` value.
133 /// Stores the low 16 bits of the value in little-endian at the pointer
134 /// specified plus the constant `offset`.
135 I32Store16 { offset: ArchitectureSize } : [2] => [0],
136 /// Pops a pointer from the stack and then an `i64` value.
137 /// Stores the value in little-endian at the pointer specified plus the
138 /// constant `offset`.
139 I64Store { offset: ArchitectureSize } : [2] => [0],
140 /// Pops a pointer from the stack and then an `f32` value.
141 /// Stores the value in little-endian at the pointer specified plus the
142 /// constant `offset`.
143 F32Store { offset: ArchitectureSize } : [2] => [0],
144 /// Pops a pointer from the stack and then an `f64` value.
145 /// Stores the value in little-endian at the pointer specified plus the
146 /// constant `offset`.
147 F64Store { offset: ArchitectureSize } : [2] => [0],
148
149 /// Like `I32Store` or `I64Store`, but for storing pointer values.
150 PointerStore { offset: ArchitectureSize } : [2] => [0],
151 /// Like `I32Store` or `I64Store`, but for storing array length values.
152 LengthStore { offset: ArchitectureSize } : [2] => [0],
153
154 // Scalar lifting/lowering
155
156 /// Converts an interface type `char` value to a 32-bit integer
157 /// representing the unicode scalar value.
158 I32FromChar : [1] => [1],
159 /// Converts an interface type `u64` value to a wasm `i64`.
160 I64FromU64 : [1] => [1],
161 /// Converts an interface type `s64` value to a wasm `i64`.
162 I64FromS64 : [1] => [1],
163 /// Converts an interface type `u32` value to a wasm `i32`.
164 I32FromU32 : [1] => [1],
165 /// Converts an interface type `s32` value to a wasm `i32`.
166 I32FromS32 : [1] => [1],
167 /// Converts an interface type `u16` value to a wasm `i32`.
168 I32FromU16 : [1] => [1],
169 /// Converts an interface type `s16` value to a wasm `i32`.
170 I32FromS16 : [1] => [1],
171 /// Converts an interface type `u8` value to a wasm `i32`.
172 I32FromU8 : [1] => [1],
173 /// Converts an interface type `s8` value to a wasm `i32`.
174 I32FromS8 : [1] => [1],
175 /// Conversion an interface type `f32` value to a wasm `f32`.
176 ///
177 /// This may be a noop for some implementations, but it's here in case the
178 /// native language representation of `f32` is different than the wasm
179 /// representation of `f32`.
180 CoreF32FromF32 : [1] => [1],
181 /// Conversion an interface type `f64` value to a wasm `f64`.
182 ///
183 /// This may be a noop for some implementations, but it's here in case the
184 /// native language representation of `f64` is different than the wasm
185 /// representation of `f64`.
186 CoreF64FromF64 : [1] => [1],
187
188 /// Converts a native wasm `i32` to an interface type `s8`.
189 ///
190 /// This will truncate the upper bits of the `i32`.
191 S8FromI32 : [1] => [1],
192 /// Converts a native wasm `i32` to an interface type `u8`.
193 ///
194 /// This will truncate the upper bits of the `i32`.
195 U8FromI32 : [1] => [1],
196 /// Converts a native wasm `i32` to an interface type `s16`.
197 ///
198 /// This will truncate the upper bits of the `i32`.
199 S16FromI32 : [1] => [1],
200 /// Converts a native wasm `i32` to an interface type `u16`.
201 ///
202 /// This will truncate the upper bits of the `i32`.
203 U16FromI32 : [1] => [1],
204 /// Converts a native wasm `i32` to an interface type `s32`.
205 S32FromI32 : [1] => [1],
206 /// Converts a native wasm `i32` to an interface type `u32`.
207 U32FromI32 : [1] => [1],
208 /// Converts a native wasm `i64` to an interface type `s64`.
209 S64FromI64 : [1] => [1],
210 /// Converts a native wasm `i64` to an interface type `u64`.
211 U64FromI64 : [1] => [1],
212 /// Converts a native wasm `i32` to an interface type `char`.
213 ///
214 /// It's safe to assume that the `i32` is indeed a valid unicode code point.
215 CharFromI32 : [1] => [1],
216 /// Converts a native wasm `f32` to an interface type `f32`.
217 F32FromCoreF32 : [1] => [1],
218 /// Converts a native wasm `f64` to an interface type `f64`.
219 F64FromCoreF64 : [1] => [1],
220
221 /// Creates a `bool` from an `i32` input, trapping if the `i32` isn't
222 /// zero or one.
223 BoolFromI32 : [1] => [1],
224 /// Creates an `i32` from a `bool` input, must return 0 or 1.
225 I32FromBool : [1] => [1],
226
227 // lists
228
229 /// Lowers a list where the element's layout in the native language is
230 /// expected to match the canonical ABI definition of interface types.
231 ///
232 /// Pops a list value from the stack and pushes the pointer/length onto
233 /// the stack. If `realloc` is set to `Some` then this is expected to
234 /// *consume* the list which means that the data needs to be copied. An
235 /// allocation/copy is expected when:
236 ///
237 /// * A host is calling a wasm export with a list (it needs to copy the
238 /// list in to the callee's module, allocating space with `realloc`)
239 /// * A wasm export is returning a list (it's expected to use `realloc`
240 /// to give ownership of the list to the caller.
241 /// * A host is returning a list in a import definition, meaning that
242 /// space needs to be allocated in the caller with `realloc`).
243 ///
244 /// A copy does not happen (e.g. `realloc` is `None`) when:
245 ///
246 /// * A wasm module calls an import with the list. In this situation
247 /// it's expected the caller will know how to access this module's
248 /// memory (e.g. the host has raw access or wasm-to-wasm communication
249 /// would copy the list).
250 ///
251 /// If `realloc` is `Some` then the adapter is not responsible for
252 /// cleaning up this list because the other end is receiving the
253 /// allocation. If `realloc` is `None` then the adapter is responsible
254 /// for cleaning up any temporary allocation it created, if any.
255 ListCanonLower {
256 element: &'a Type,
257 realloc: Option<&'a str>,
258 } : [1] => [2],
259
260 /// Same as `ListCanonLower`, but used for strings
261 StringLower {
262 realloc: Option<&'a str>,
263 } : [1] => [2],
264
265 /// Lowers a list where the element's layout in the native language is
266 /// not expected to match the canonical ABI definition of interface
267 /// types.
268 ///
269 /// Pops a list value from the stack and pushes the pointer/length onto
270 /// the stack. This operation also pops a block from the block stack
271 /// which is used as the iteration body of writing each element of the
272 /// list consumed.
273 ///
274 /// The `realloc` field here behaves the same way as `ListCanonLower`.
275 /// It's only set to `None` when a wasm module calls a declared import.
276 /// Otherwise lowering in other contexts requires allocating memory for
277 /// the receiver to own.
278 ListLower {
279 element: &'a Type,
280 realloc: Option<&'a str>,
281 } : [1] => [2],
282
283 /// Lifts a list which has a canonical representation into an interface
284 /// types value.
285 ///
286 /// The term "canonical" representation here means that the
287 /// representation of the interface types value in the native language
288 /// exactly matches the canonical ABI definition of the type.
289 ///
290 /// This will consume two `i32` values from the stack, a pointer and a
291 /// length, and then produces an interface value list.
292 ListCanonLift {
293 element: &'a Type,
294 ty: TypeId,
295 } : [2] => [1],
296
297 /// Same as `ListCanonLift`, but used for strings
298 StringLift : [2] => [1],
299
300 /// Lifts a list which into an interface types value.
301 ///
302 /// This will consume two `i32` values from the stack, a pointer and a
303 /// length, and then produces an interface value list.
304 ///
305 /// This will also pop a block from the block stack which is how to
306 /// read each individual element from the list.
307 ListLift {
308 element: &'a Type,
309 ty: TypeId,
310 } : [2] => [1],
311
312 /// Pushes an operand onto the stack representing the list item from
313 /// each iteration of the list.
314 ///
315 /// This is only used inside of blocks related to lowering lists.
316 IterElem { element: &'a Type } : [0] => [1],
317
318 /// Pushes an operand onto the stack representing the base pointer of
319 /// the next element in a list.
320 ///
321 /// This is used for both lifting and lowering lists.
322 IterBasePointer : [0] => [1],
323
324 // records and tuples
325
326 /// Pops a record value off the stack, decomposes the record to all of
327 /// its fields, and then pushes the fields onto the stack.
328 RecordLower {
329 record: &'a Record,
330 name: &'a str,
331 ty: TypeId,
332 } : [1] => [record.fields.len()],
333
334 /// Pops all fields for a record off the stack and then composes them
335 /// into a record.
336 RecordLift {
337 record: &'a Record,
338 name: &'a str,
339 ty: TypeId,
340 } : [record.fields.len()] => [1],
341
342 /// Create an `i32` from a handle.
343 HandleLower {
344 handle: &'a Handle,
345 name: &'a str,
346 ty: TypeId,
347 } : [1] => [1],
348
349 /// Create a handle from an `i32`.
350 HandleLift {
351 handle: &'a Handle,
352 name: &'a str,
353 ty: TypeId,
354 } : [1] => [1],
355
356 /// Create an `i32` from a future.
357 FutureLower {
358 payload: &'a Option<Type>,
359 ty: TypeId,
360 } : [1] => [1],
361
362 /// Create a future from an `i32`.
363 FutureLift {
364 payload: &'a Option<Type>,
365 ty: TypeId,
366 } : [1] => [1],
367
368 /// Create an `i32` from a stream.
369 StreamLower {
370 payload: &'a Option<Type>,
371 ty: TypeId,
372 } : [1] => [1],
373
374 /// Create a stream from an `i32`.
375 StreamLift {
376 payload: &'a Option<Type>,
377 ty: TypeId,
378 } : [1] => [1],
379
380 /// Create an `i32` from an error-context.
381 ErrorContextLower : [1] => [1],
382
383 /// Create a error-context from an `i32`.
384 ErrorContextLift : [1] => [1],
385
386 /// Pops a tuple value off the stack, decomposes the tuple to all of
387 /// its fields, and then pushes the fields onto the stack.
388 TupleLower {
389 tuple: &'a Tuple,
390 ty: TypeId,
391 } : [1] => [tuple.types.len()],
392
393 /// Pops all fields for a tuple off the stack and then composes them
394 /// into a tuple.
395 TupleLift {
396 tuple: &'a Tuple,
397 ty: TypeId,
398 } : [tuple.types.len()] => [1],
399
400 /// Converts a language-specific record-of-bools to a list of `i32`.
401 FlagsLower {
402 flags: &'a Flags,
403 name: &'a str,
404 ty: TypeId,
405 } : [1] => [flags.repr().count()],
406 /// Converts a list of native wasm `i32` to a language-specific
407 /// record-of-bools.
408 FlagsLift {
409 flags: &'a Flags,
410 name: &'a str,
411 ty: TypeId,
412 } : [flags.repr().count()] => [1],
413
414 // variants
415
416 /// This is a special instruction used for `VariantLower`
417 /// instruction to determine the name of the payload, if present, to use
418 /// within each block.
419 ///
420 /// Each sub-block will have this be the first instruction, and if it
421 /// lowers a payload it will expect something bound to this name.
422 VariantPayloadName : [0] => [1],
423
424 /// Pops a variant off the stack as well as `ty.cases.len()` blocks
425 /// from the code generator. Uses each of those blocks and the value
426 /// from the stack to produce `nresults` of items.
427 VariantLower {
428 variant: &'a Variant,
429 name: &'a str,
430 ty: TypeId,
431 results: &'a [WasmType],
432 } : [1] => [results.len()],
433
434 /// Pops an `i32` off the stack as well as `ty.cases.len()` blocks
435 /// from the code generator. Uses each of those blocks and the value
436 /// from the stack to produce a final variant.
437 VariantLift {
438 variant: &'a Variant,
439 name: &'a str,
440 ty: TypeId,
441 } : [1] => [1],
442
443 /// Pops an enum off the stack and pushes the `i32` representation.
444 EnumLower {
445 enum_: &'a Enum,
446 name: &'a str,
447 ty: TypeId,
448 } : [1] => [1],
449
450 /// Pops an `i32` off the stack and lifts it into the `enum` specified.
451 EnumLift {
452 enum_: &'a Enum,
453 name: &'a str,
454 ty: TypeId,
455 } : [1] => [1],
456
457 /// Specialization of `VariantLower` for specifically `option<T>` types,
458 /// otherwise behaves the same as `VariantLower` (e.g. two blocks for
459 /// the two cases.
460 OptionLower {
461 payload: &'a Type,
462 ty: TypeId,
463 results: &'a [WasmType],
464 } : [1] => [results.len()],
465
466 /// Specialization of `VariantLift` for specifically the `option<T>`
467 /// type. Otherwise behaves the same as the `VariantLift` instruction
468 /// with two blocks for the lift.
469 OptionLift {
470 payload: &'a Type,
471 ty: TypeId,
472 } : [1] => [1],
473
474 /// Specialization of `VariantLower` for specifically `result<T, E>`
475 /// types, otherwise behaves the same as `VariantLower` (e.g. two blocks
476 /// for the two cases.
477 ResultLower {
478 result: &'a Result_
479 ty: TypeId,
480 results: &'a [WasmType],
481 } : [1] => [results.len()],
482
483 /// Specialization of `VariantLift` for specifically the `result<T,
484 /// E>` type. Otherwise behaves the same as the `VariantLift`
485 /// instruction with two blocks for the lift.
486 ResultLift {
487 result: &'a Result_,
488 ty: TypeId,
489 } : [1] => [1],
490
491 // calling/control flow
492
493 /// Represents a call to a raw WebAssembly API. The module/name are
494 /// provided inline as well as the types if necessary.
495 CallWasm {
496 name: &'a str,
497 sig: &'a WasmSignature,
498 } : [sig.params.len()] => [sig.results.len()],
499
500 /// Same as `CallWasm`, except the dual where an interface is being
501 /// called rather than a raw wasm function.
502 ///
503 /// Note that this will be used for async functions, and `async_`
504 /// indicates whether the function should be invoked in an async
505 /// fashion.
506 CallInterface {
507 func: &'a Function,
508 async_: bool,
509 } : [func.params.len()] => [usize::from(func.result.is_some())],
510
511 /// Returns `amt` values on the stack. This is always the last
512 /// instruction.
513 Return { amt: usize, func: &'a Function } : [*amt] => [0],
514
515 /// Calls the `realloc` function specified in a malloc-like fashion
516 /// allocating `size` bytes with alignment `align`.
517 ///
518 /// Pushes the returned pointer onto the stack.
519 Malloc {
520 realloc: &'static str,
521 size: ArchitectureSize,
522 align: Alignment,
523 } : [0] => [1],
524
525 /// Used exclusively for guest-code generation this indicates that
526 /// the standard memory deallocation function needs to be invoked with
527 /// the specified parameters.
528 ///
529 /// This will pop a pointer from the stack and push nothing.
530 GuestDeallocate {
531 size: ArchitectureSize,
532 align: Alignment,
533 } : [1] => [0],
534
535 /// Used exclusively for guest-code generation this indicates that
536 /// a string is being deallocated. The ptr/length are on the stack and
537 /// are poppped off and used to deallocate the string.
538 GuestDeallocateString : [2] => [0],
539
540 /// Used exclusively for guest-code generation this indicates that
541 /// a list is being deallocated. The ptr/length are on the stack and
542 /// are poppped off and used to deallocate the list.
543 ///
544 /// This variant also pops a block off the block stack to be used as the
545 /// body of the deallocation loop.
546 GuestDeallocateList {
547 element: &'a Type,
548 } : [2] => [0],
549
550 /// Used exclusively for guest-code generation this indicates that
551 /// a variant is being deallocated. The integer discriminant is popped
552 /// off the stack as well as `blocks` number of blocks popped from the
553 /// blocks stack. The variant is used to select, at runtime, which of
554 /// the blocks is executed to deallocate the variant.
555 GuestDeallocateVariant {
556 blocks: usize,
557 } : [1] => [0],
558
559 /// Deallocates the language-specific handle representation on the top
560 /// of the stack. Used for async imports.
561 DropHandle { ty: &'a Type } : [1] => [0],
562
563 /// Call `task.return` for an async-lifted export.
564 ///
565 /// This will call core wasm import `name` which will be mapped to
566 /// `task.return` later on. The function given has `params` as its
567 /// parameters and it will return no results. This is used to pass the
568 /// lowered representation of a function's results to `task.return`.
569 AsyncTaskReturn { name: &'a str, params: &'a [WasmType] } : [params.len()] => [0],
570
571 /// Force the evaluation of the specified number of expressions and push
572 /// the results to the stack.
573 ///
574 /// This is useful prior to disposing of temporary variables and/or
575 /// allocations which are referenced by one or more not-yet-evaluated
576 /// expressions.
577 Flush { amt: usize } : [*amt] => [*amt],
578 }
579}
580
581#[derive(Debug, PartialEq)]
582pub enum Bitcast {
583 // Upcasts
584 F32ToI32,
585 F64ToI64,
586 I32ToI64,
587 F32ToI64,
588
589 // Downcasts
590 I32ToF32,
591 I64ToF64,
592 I64ToI32,
593 I64ToF32,
594
595 // PointerOrI64 conversions. These preserve provenance when the source
596 // or destination is a pointer value.
597 //
598 // These are used when pointer values are being stored in
599 // (ToP64) and loaded out of (P64To) PointerOrI64 values, so they
600 // always have to preserve provenance when the value being loaded or
601 // stored is a pointer.
602 P64ToI64,
603 I64ToP64,
604 P64ToP,
605 PToP64,
606
607 // Pointer<->number conversions. These do not preserve provenance.
608 //
609 // These are used when integer or floating-point values are being stored in
610 // (I32ToP/etc.) and loaded out of (PToI32/etc.) pointer values, so they
611 // never have any provenance to preserve.
612 I32ToP,
613 PToI32,
614 PToL,
615 LToP,
616
617 // Number<->Number conversions.
618 I32ToL,
619 LToI32,
620 I64ToL,
621 LToI64,
622
623 // Multiple conversions in sequence.
624 Sequence(Box<[Bitcast; 2]>),
625
626 None,
627}
628
629/// Whether the glue code surrounding a call is lifting arguments and lowering
630/// results or vice versa.
631#[derive(Clone, Copy, PartialEq, Eq)]
632pub enum LiftLower {
633 /// When the glue code lifts arguments and lowers results.
634 ///
635 /// ```text
636 /// Wasm --lift-args--> SourceLanguage; call; SourceLanguage --lower-results--> Wasm
637 /// ```
638 LiftArgsLowerResults,
639 /// When the glue code lowers arguments and lifts results.
640 ///
641 /// ```text
642 /// SourceLanguage --lower-args--> Wasm; call; Wasm --lift-results--> SourceLanguage
643 /// ```
644 LowerArgsLiftResults,
645}
646
647/// Trait for language implementors to use to generate glue code between native
648/// WebAssembly signatures and interface types signatures.
649///
650/// This is used as an implementation detail in interpreting the ABI between
651/// interface types and wasm types. Eventually this will be driven by interface
652/// types adapters themselves, but for now the ABI of a function dictates what
653/// instructions are fed in.
654///
655/// Types implementing `Bindgen` are incrementally fed `Instruction` values to
656/// generate code for. Instructions operate like a stack machine where each
657/// instruction has a list of inputs and a list of outputs (provided by the
658/// `emit` function).
659pub trait Bindgen {
660 /// The intermediate type for fragments of code for this type.
661 ///
662 /// For most languages `String` is a suitable intermediate type.
663 type Operand: Clone + fmt::Debug;
664
665 /// Emit code to implement the given instruction.
666 ///
667 /// Each operand is given in `operands` and can be popped off if ownership
668 /// is required. It's guaranteed that `operands` has the appropriate length
669 /// for the `inst` given, as specified with [`Instruction`].
670 ///
671 /// Each result variable should be pushed onto `results`. This function must
672 /// push the appropriate number of results or binding generation will panic.
673 fn emit(
674 &mut self,
675 resolve: &Resolve,
676 inst: &Instruction<'_>,
677 operands: &mut Vec<Self::Operand>,
678 results: &mut Vec<Self::Operand>,
679 );
680
681 /// Gets a operand reference to the return pointer area.
682 ///
683 /// The provided size and alignment is for the function's return type.
684 fn return_pointer(&mut self, size: ArchitectureSize, align: Alignment) -> Self::Operand;
685
686 /// Enters a new block of code to generate code for.
687 ///
688 /// This is currently exclusively used for constructing variants. When a
689 /// variant is constructed a block here will be pushed for each case of a
690 /// variant, generating the code necessary to translate a variant case.
691 ///
692 /// Blocks are completed with `finish_block` below. It's expected that `emit`
693 /// will always push code (if necessary) into the "current block", which is
694 /// updated by calling this method and `finish_block` below.
695 fn push_block(&mut self);
696
697 /// Indicates to the code generator that a block is completed, and the
698 /// `operand` specified was the resulting value of the block.
699 ///
700 /// This method will be used to compute the value of each arm of lifting a
701 /// variant. The `operand` will be `None` if the variant case didn't
702 /// actually have any type associated with it. Otherwise it will be `Some`
703 /// as the last value remaining on the stack representing the value
704 /// associated with a variant's `case`.
705 ///
706 /// It's expected that this will resume code generation in the previous
707 /// block before `push_block` was called. This must also save the results
708 /// of the current block internally for instructions like `ResultLift` to
709 /// use later.
710 fn finish_block(&mut self, operand: &mut Vec<Self::Operand>);
711
712 /// Returns size information that was previously calculated for all types.
713 fn sizes(&self) -> &SizeAlign;
714
715 /// Returns whether or not the specified element type is represented in a
716 /// "canonical" form for lists. This dictates whether the `ListCanonLower`
717 /// and `ListCanonLift` instructions are used or not.
718 fn is_list_canonical(&self, resolve: &Resolve, element: &Type) -> bool;
719}
720
721/// Generates an abstract sequence of instructions which represents this
722/// function being adapted as an imported function.
723///
724/// The instructions here, when executed, will emulate a language with
725/// interface types calling the concrete wasm implementation. The parameters
726/// for the returned instruction sequence are the language's own
727/// interface-types parameters. One instruction in the instruction stream
728/// will be a `Call` which represents calling the actual raw wasm function
729/// signature.
730///
731/// This function is useful, for example, if you're building a language
732/// generator for WASI bindings. This will document how to translate
733/// language-specific values into the wasm types to call a WASI function,
734/// and it will also automatically convert the results of the WASI function
735/// back to a language-specific value.
736pub fn call(
737 resolve: &Resolve,
738 variant: AbiVariant,
739 lift_lower: LiftLower,
740 func: &Function,
741 bindgen: &mut impl Bindgen,
742 async_: bool,
743) {
744 Generator::new(resolve, bindgen).call(func, variant, lift_lower, async_);
745}
746
747pub fn lower_to_memory<B: Bindgen>(
748 resolve: &Resolve,
749 bindgen: &mut B,
750 address: B::Operand,
751 value: B::Operand,
752 ty: &Type,
753) {
754 let mut generator = Generator::new(resolve, bindgen);
755 // TODO: make this configurable? Right now this function is only called for
756 // future/stream callbacks so it's appropriate to skip realloc here as it's
757 // all "lower for wasm import", but this might get reused for something else
758 // in the future.
759 generator.realloc = Some(Realloc::Export("cabi_realloc"));
760 generator.stack.push(value);
761 generator.write_to_memory(ty, address, Default::default());
762}
763
764pub fn lower_flat<B: Bindgen>(
765 resolve: &Resolve,
766 bindgen: &mut B,
767 value: B::Operand,
768 ty: &Type,
769) -> Vec<B::Operand> {
770 let mut generator = Generator::new(resolve, bindgen);
771 generator.stack.push(value);
772 generator.realloc = Some(Realloc::Export("cabi_realloc"));
773 generator.lower(ty);
774 generator.stack
775}
776
777pub fn lift_from_memory<B: Bindgen>(
778 resolve: &Resolve,
779 bindgen: &mut B,
780 address: B::Operand,
781 ty: &Type,
782) -> B::Operand {
783 let mut generator = Generator::new(resolve, bindgen);
784 generator.read_from_memory(ty, address, Default::default());
785 generator.stack.pop().unwrap()
786}
787
788/// Used in a similar manner as the `Interface::call` function except is
789/// used to generate the `post-return` callback for `func`.
790///
791/// This is only intended to be used in guest generators for exported
792/// functions and will primarily generate `GuestDeallocate*` instructions,
793/// plus others used as input to those instructions.
794pub fn post_return(resolve: &Resolve, func: &Function, bindgen: &mut impl Bindgen) {
795 Generator::new(resolve, bindgen).post_return(func);
796}
797
798/// Returns whether the `Function` specified needs a post-return function to
799/// be generated in guest code.
800///
801/// This is used when the return value contains a memory allocation such as
802/// a list or a string primarily.
803pub fn guest_export_needs_post_return(resolve: &Resolve, func: &Function) -> bool {
804 func.result
805 .map(|t| needs_deallocate(resolve, &t, Deallocate::Lists))
806 .unwrap_or(false)
807}
808
809fn needs_deallocate(resolve: &Resolve, ty: &Type, what: Deallocate) -> bool {
810 match ty {
811 Type::String => true,
812 Type::ErrorContext => true,
813 Type::Id(id) => match &resolve.types[*id].kind {
814 TypeDefKind::List(_) => true,
815 TypeDefKind::Type(t) => needs_deallocate(resolve, t, what),
816 TypeDefKind::Handle(Handle::Own(_)) => what.handles(),
817 TypeDefKind::Handle(Handle::Borrow(_)) => false,
818 TypeDefKind::Resource => false,
819 TypeDefKind::Record(r) => r
820 .fields
821 .iter()
822 .any(|f| needs_deallocate(resolve, &f.ty, what)),
823 TypeDefKind::Tuple(t) => t.types.iter().any(|t| needs_deallocate(resolve, t, what)),
824 TypeDefKind::Variant(t) => t
825 .cases
826 .iter()
827 .filter_map(|t| t.ty.as_ref())
828 .any(|t| needs_deallocate(resolve, t, what)),
829 TypeDefKind::Option(t) => needs_deallocate(resolve, t, what),
830 TypeDefKind::Result(t) => [&t.ok, &t.err]
831 .iter()
832 .filter_map(|t| t.as_ref())
833 .any(|t| needs_deallocate(resolve, t, what)),
834 TypeDefKind::Flags(_) | TypeDefKind::Enum(_) => false,
835 TypeDefKind::Future(_) | TypeDefKind::Stream(_) => what.handles(),
836 TypeDefKind::Unknown => unreachable!(),
837 TypeDefKind::FixedSizeList(..) => todo!(),
838 },
839
840 Type::Bool
841 | Type::U8
842 | Type::S8
843 | Type::U16
844 | Type::S16
845 | Type::U32
846 | Type::S32
847 | Type::U64
848 | Type::S64
849 | Type::F32
850 | Type::F64
851 | Type::Char => false,
852 }
853}
854
855/// Generate instructions in `bindgen` to deallocate all lists in `ptr` where
856/// that's a pointer to a sequence of `types` stored in linear memory.
857pub fn deallocate_lists_in_types<B: Bindgen>(
858 resolve: &Resolve,
859 types: &[Type],
860 operands: &[B::Operand],
861 indirect: bool,
862 bindgen: &mut B,
863) {
864 Generator::new(resolve, bindgen).deallocate_in_types(
865 types,
866 operands,
867 indirect,
868 Deallocate::Lists,
869 );
870}
871
872/// Generate instructions in `bindgen` to deallocate all lists in `ptr` where
873/// that's a pointer to a sequence of `types` stored in linear memory.
874pub fn deallocate_lists_and_own_in_types<B: Bindgen>(
875 resolve: &Resolve,
876 types: &[Type],
877 operands: &[B::Operand],
878 indirect: bool,
879 bindgen: &mut B,
880) {
881 Generator::new(resolve, bindgen).deallocate_in_types(
882 types,
883 operands,
884 indirect,
885 Deallocate::ListsAndOwn,
886 );
887}
888
889#[derive(Copy, Clone)]
890pub enum Realloc {
891 None,
892 Export(&'static str),
893}
894
895/// What to deallocate in various `deallocate_*` methods.
896#[derive(Copy, Clone)]
897enum Deallocate {
898 /// Only deallocate lists.
899 Lists,
900 /// Deallocate lists and owned resources such as `own<T>` and
901 /// futures/streams.
902 ListsAndOwn,
903}
904
905impl Deallocate {
906 fn handles(&self) -> bool {
907 match self {
908 Deallocate::Lists => false,
909 Deallocate::ListsAndOwn => true,
910 }
911 }
912}
913
914struct Generator<'a, B: Bindgen> {
915 bindgen: &'a mut B,
916 resolve: &'a Resolve,
917 operands: Vec<B::Operand>,
918 results: Vec<B::Operand>,
919 stack: Vec<B::Operand>,
920 return_pointer: Option<B::Operand>,
921 realloc: Option<Realloc>,
922}
923
924const MAX_FLAT_PARAMS: usize = 16;
925const MAX_FLAT_ASYNC_PARAMS: usize = 4;
926
927impl<'a, B: Bindgen> Generator<'a, B> {
928 fn new(resolve: &'a Resolve, bindgen: &'a mut B) -> Generator<'a, B> {
929 Generator {
930 resolve,
931 bindgen,
932 operands: Vec::new(),
933 results: Vec::new(),
934 stack: Vec::new(),
935 return_pointer: None,
936 realloc: None,
937 }
938 }
939
940 fn call(&mut self, func: &Function, variant: AbiVariant, lift_lower: LiftLower, async_: bool) {
941 let sig = self.resolve.wasm_signature(variant, func);
942
943 // Lowering parameters calling a wasm import _or_ returning a result
944 // from an async-lifted wasm export means we don't need to pass
945 // ownership, but we pass ownership in all other cases.
946 let realloc = match (variant, lift_lower, async_) {
947 (AbiVariant::GuestImport, LiftLower::LowerArgsLiftResults, _)
948 | (
949 AbiVariant::GuestExport
950 | AbiVariant::GuestExportAsync
951 | AbiVariant::GuestExportAsyncStackful,
952 LiftLower::LiftArgsLowerResults,
953 true,
954 ) => Realloc::None,
955 _ => Realloc::Export("cabi_realloc"),
956 };
957 assert!(self.realloc.is_none());
958
959 match lift_lower {
960 LiftLower::LowerArgsLiftResults => {
961 assert!(!async_, "generators should not be using this for async");
962
963 self.realloc = Some(realloc);
964 if let (AbiVariant::GuestExport, true) = (variant, async_) {
965 unimplemented!("host-side code generation for async lift/lower not supported");
966 }
967
968 let lower_to_memory = |self_: &mut Self, ptr: B::Operand| {
969 let mut offset = ArchitectureSize::default();
970 for (nth, (_, ty)) in func.params.iter().enumerate() {
971 self_.emit(&Instruction::GetArg { nth });
972 offset = align_to_arch(offset, self_.bindgen.sizes().align(ty));
973 self_.write_to_memory(ty, ptr.clone(), offset);
974 offset += self_.bindgen.sizes().size(ty);
975 }
976
977 self_.stack.push(ptr);
978 };
979
980 if !sig.indirect_params {
981 // If the parameters for this function aren't indirect
982 // (there aren't too many) then we simply do a normal lower
983 // operation for them all.
984 for (nth, (_, ty)) in func.params.iter().enumerate() {
985 self.emit(&Instruction::GetArg { nth });
986 self.lower(ty);
987 }
988 } else {
989 // ... otherwise if parameters are indirect space is
990 // allocated for them and each argument is lowered
991 // individually into memory.
992 let ElementInfo { size, align } = self
993 .bindgen
994 .sizes()
995 .record(func.params.iter().map(|t| &t.1));
996 let ptr = match variant {
997 // When a wasm module calls an import it will provide
998 // space that isn't explicitly deallocated.
999 AbiVariant::GuestImport => self.bindgen.return_pointer(size, align),
1000 // When calling a wasm module from the outside, though,
1001 // malloc needs to be called.
1002 AbiVariant::GuestExport => {
1003 self.emit(&Instruction::Malloc {
1004 realloc: "cabi_realloc",
1005 size,
1006 align,
1007 });
1008 self.stack.pop().unwrap()
1009 }
1010 AbiVariant::GuestImportAsync
1011 | AbiVariant::GuestExportAsync
1012 | AbiVariant::GuestExportAsyncStackful => {
1013 unreachable!()
1014 }
1015 };
1016 lower_to_memory(self, ptr);
1017 }
1018 self.realloc = None;
1019
1020 // If necessary we may need to prepare a return pointer for
1021 // this ABI.
1022 if variant == AbiVariant::GuestImport && sig.retptr {
1023 let info = self.bindgen.sizes().params(&func.result);
1024 let ptr = self.bindgen.return_pointer(info.size, info.align);
1025 self.return_pointer = Some(ptr.clone());
1026 self.stack.push(ptr);
1027 }
1028
1029 assert_eq!(self.stack.len(), sig.params.len());
1030 self.emit(&Instruction::CallWasm {
1031 name: &func.name,
1032 sig: &sig,
1033 });
1034
1035 if !sig.retptr {
1036 // With no return pointer in use we can simply lift the
1037 // result(s) of the function from the result of the core
1038 // wasm function.
1039 if let Some(ty) = &func.result {
1040 self.lift(ty)
1041 }
1042 } else {
1043 let ptr = match variant {
1044 // imports into guests means it's a wasm module
1045 // calling an imported function. We supplied the
1046 // return pointer as the last argument (saved in
1047 // `self.return_pointer`) so we use that to read
1048 // the result of the function from memory.
1049 AbiVariant::GuestImport => {
1050 assert!(sig.results.is_empty());
1051 self.return_pointer.take().unwrap()
1052 }
1053
1054 // guest exports means that this is a host
1055 // calling wasm so wasm returned a pointer to where
1056 // the result is stored
1057 AbiVariant::GuestExport => self.stack.pop().unwrap(),
1058
1059 AbiVariant::GuestImportAsync
1060 | AbiVariant::GuestExportAsync
1061 | AbiVariant::GuestExportAsyncStackful => {
1062 unreachable!()
1063 }
1064 };
1065
1066 self.read_results_from_memory(
1067 &func.result,
1068 ptr.clone(),
1069 ArchitectureSize::default(),
1070 );
1071 self.emit(&Instruction::Flush {
1072 amt: usize::from(func.result.is_some()),
1073 });
1074 }
1075
1076 self.emit(&Instruction::Return {
1077 func,
1078 amt: usize::from(func.result.is_some()),
1079 });
1080 }
1081
1082 LiftLower::LiftArgsLowerResults => {
1083 let max_flat_params = match (variant, async_) {
1084 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, _is_async @ true) => {
1085 MAX_FLAT_ASYNC_PARAMS
1086 }
1087 _ => MAX_FLAT_PARAMS,
1088 };
1089
1090 // Read parameters from memory
1091 let read_from_memory = |self_: &mut Self| {
1092 let mut offset = ArchitectureSize::default();
1093 let ptr = self_
1094 .stack
1095 .pop()
1096 .expect("empty stack during read param from memory");
1097 for (_, ty) in func.params.iter() {
1098 offset = align_to_arch(offset, self_.bindgen.sizes().align(ty));
1099 self_.read_from_memory(ty, ptr.clone(), offset);
1100 offset += self_.bindgen.sizes().size(ty);
1101 }
1102 };
1103
1104 // Resolve parameters
1105 if sig.indirect_params {
1106 // If parameters were passed indirectly, arguments must be
1107 // read in succession from memory, with the pointer to the arguments
1108 // being the first argument to the function.
1109 self.emit(&Instruction::GetArg { nth: 0 });
1110 read_from_memory(self);
1111 } else {
1112 // ... otherwise, if parameters were passed directly then we lift each
1113 // argument in succession from the component wasm types that
1114 // make-up the type.
1115 let mut offset = 0;
1116 for (_, ty) in func.params.iter() {
1117 let types = flat_types(self.resolve, ty, Some(max_flat_params))
1118 .expect(&format!("direct parameter load failed to produce types during generation of fn call (func name: '{}')", func.name));
1119 for _ in 0..types.len() {
1120 self.emit(&Instruction::GetArg { nth: offset });
1121 offset += 1;
1122 }
1123 self.lift(ty);
1124 }
1125 }
1126
1127 // ... and that allows us to call the interface types function
1128 self.emit(&Instruction::CallInterface { func, async_ });
1129
1130 // The return value of an async function is *not* the result of the function
1131 // itself or a pointer but rather a status code.
1132 //
1133 // Asynchronous functions will call `task.return` after the
1134 // interface function completes, so lowering is conditional
1135 // based on slightly different logic for the `task.return`
1136 // intrinsic.
1137 //
1138 // Note that in the async import case teh code below deals with the CM function being lowered,
1139 // not the core function that is underneath that (i.e. func.result may be empty,
1140 // where the associated core function underneath must have a i32 status code result)
1141 let (lower_to_memory, async_flat_results) = match (async_, &func.result) {
1142 // All async cases pass along the function results and flatten where necesary
1143 (_is_async @ true, func_result) => {
1144 let results = match &func_result {
1145 Some(ty) => flat_types(self.resolve, ty, Some(max_flat_params)),
1146 None => Some(Vec::new()),
1147 };
1148 (results.is_none(), Some(results))
1149 }
1150 // All other non-async cases
1151 (_is_async @ false, _) => (sig.retptr, None),
1152 };
1153
1154 // This was dynamically allocated by the caller (or async start
1155 // function) so after it's been read by the guest we need to
1156 // deallocate it.
1157 if let AbiVariant::GuestExport
1158 | AbiVariant::GuestExportAsync
1159 | AbiVariant::GuestExportAsyncStackful = variant
1160 {
1161 if sig.indirect_params && !async_ {
1162 let ElementInfo { size, align } = self
1163 .bindgen
1164 .sizes()
1165 .record(func.params.iter().map(|t| &t.1));
1166 self.emit(&Instruction::GetArg { nth: 0 });
1167 self.emit(&Instruction::GuestDeallocate { size, align });
1168 }
1169 }
1170
1171 self.realloc = Some(realloc);
1172
1173 // Perform memory lowing of relevant results, including out pointers as well as traditional results
1174 match (lower_to_memory, sig.retptr, variant) {
1175 // For sync calls, if no lowering to memory is required and there *is* a return pointer in use
1176 // then we need to lower then simply lower the result(s) and return that directly from the function.
1177 (_lower_to_memory @ false, _, _) => {
1178 if let Some(ty) = &func.result {
1179 self.lower(ty);
1180 }
1181 }
1182
1183 // Lowering to memory for a guest import
1184 //
1185 // When a function is imported to a guest this means
1186 // it's a host providing the implementation of the
1187 // import. The result is stored in the pointer
1188 // specified in the last argument, so we get the
1189 // pointer here and then write the return value into
1190 // it.
1191 (
1192 _lower_to_memory @ true,
1193 _has_ret_ptr @ true,
1194 AbiVariant::GuestImport | AbiVariant::GuestImportAsync,
1195 ) => {
1196 self.emit(&Instruction::GetArg {
1197 nth: sig.params.len() - 1,
1198 });
1199 let ptr = self
1200 .stack
1201 .pop()
1202 .expect("empty stack during result lower to memory");
1203 self.write_params_to_memory(&func.result, ptr, Default::default());
1204 }
1205
1206 // Lowering to memory for a guest export
1207 //
1208 // For a guest import this is a function defined in
1209 // wasm, so we're returning a pointer where the
1210 // value was stored at. Allocate some space here
1211 // (statically) and then write the result into that
1212 // memory, returning the pointer at the end.
1213 (_lower_to_memory @ true, _, variant) => match variant {
1214 AbiVariant::GuestExport | AbiVariant::GuestExportAsync => {
1215 let ElementInfo { size, align } =
1216 self.bindgen.sizes().params(&func.result);
1217 let ptr = self.bindgen.return_pointer(size, align);
1218 self.write_params_to_memory(
1219 &func.result,
1220 ptr.clone(),
1221 Default::default(),
1222 );
1223 self.stack.push(ptr);
1224 }
1225 AbiVariant::GuestImport | AbiVariant::GuestImportAsync => {
1226 unreachable!(
1227 "lowering to memory cannot be performed without a return pointer ({async_note} func [{func_name}], variant {variant:#?})",
1228 async_note = async_.then_some("async").unwrap_or("sync"),
1229 func_name = func.name,
1230 )
1231 }
1232 AbiVariant::GuestExportAsyncStackful => {
1233 todo!("stackful exports are not yet supported")
1234 }
1235 },
1236 }
1237
1238 // Build and emit the appropriate return
1239 match (variant, async_flat_results) {
1240 // Async guest imports always return a i32 status code
1241 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, None) if async_ => {
1242 unreachable!("async guest imports must have a return")
1243 }
1244
1245 // Async guest imports with results return the status code, not a pointer to any results
1246 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, Some(results))
1247 if async_ =>
1248 {
1249 let name = &format!("[task-return]{}", func.name);
1250 let params = results.as_deref().unwrap_or_default();
1251 self.emit(&Instruction::AsyncTaskReturn { name, params });
1252 }
1253
1254 // All async/non-async cases with results that need to be returned are present here
1255 //
1256 // In practice, async imports should not end up here, as the returned result of an
1257 // async import is *not* a pointer but instead a status code.
1258 (_, Some(results)) => {
1259 let name = &format!("[task-return]{}", func.name);
1260 let params = results.as_deref().unwrap_or(&[WasmType::Pointer]);
1261 self.emit(&Instruction::AsyncTaskReturn { name, params });
1262 }
1263
1264 // All async/non-async cases with no results simply return
1265 //
1266 // In practice, an async import will never get here (it always has a result, the error code)
1267 (_, None) => {
1268 self.emit(&Instruction::Return {
1269 func,
1270 amt: sig.results.len(),
1271 });
1272 }
1273 }
1274
1275 self.realloc = None;
1276 }
1277 }
1278
1279 assert!(self.realloc.is_none());
1280
1281 assert!(
1282 self.stack.is_empty(),
1283 "stack has {} items remaining: {:?}",
1284 self.stack.len(),
1285 self.stack,
1286 );
1287 }
1288
1289 fn post_return(&mut self, func: &Function) {
1290 let sig = self.resolve.wasm_signature(AbiVariant::GuestExport, func);
1291
1292 // Currently post-return is only used for lists and lists are always
1293 // returned indirectly through memory due to their flat representation
1294 // having more than one type. Assert that a return pointer is used,
1295 // though, in case this ever changes.
1296 assert!(sig.retptr);
1297
1298 self.emit(&Instruction::GetArg { nth: 0 });
1299 let addr = self.stack.pop().unwrap();
1300
1301 let mut types = Vec::new();
1302 types.extend(func.result);
1303 self.deallocate_in_types(&types, &[addr], true, Deallocate::Lists);
1304
1305 self.emit(&Instruction::Return { func, amt: 0 });
1306 }
1307
1308 fn deallocate_in_types(
1309 &mut self,
1310 types: &[Type],
1311 operands: &[B::Operand],
1312 indirect: bool,
1313 what: Deallocate,
1314 ) {
1315 if indirect {
1316 assert_eq!(operands.len(), 1);
1317 for (offset, ty) in self.bindgen.sizes().field_offsets(types) {
1318 self.deallocate_indirect(ty, operands[0].clone(), offset, what);
1319 }
1320 assert!(
1321 self.stack.is_empty(),
1322 "stack has {} items remaining",
1323 self.stack.len()
1324 );
1325 } else {
1326 let mut operands = operands;
1327 let mut operands_for_ty;
1328 for ty in types {
1329 let types = flat_types(self.resolve, ty, None).unwrap();
1330 (operands_for_ty, operands) = operands.split_at(types.len());
1331 self.stack.extend_from_slice(operands_for_ty);
1332 self.deallocate(ty, what);
1333 assert!(
1334 self.stack.is_empty(),
1335 "stack has {} items remaining",
1336 self.stack.len()
1337 );
1338 }
1339 assert!(operands.is_empty());
1340 }
1341 }
1342
1343 fn emit(&mut self, inst: &Instruction<'_>) {
1344 self.operands.clear();
1345 self.results.clear();
1346
1347 let operands_len = inst.operands_len();
1348 assert!(
1349 self.stack.len() >= operands_len,
1350 "not enough operands on stack for {:?}: have {} need {operands_len}",
1351 inst,
1352 self.stack.len(),
1353 );
1354 self.operands
1355 .extend(self.stack.drain((self.stack.len() - operands_len)..));
1356 self.results.reserve(inst.results_len());
1357
1358 self.bindgen
1359 .emit(self.resolve, inst, &mut self.operands, &mut self.results);
1360
1361 assert_eq!(
1362 self.results.len(),
1363 inst.results_len(),
1364 "{:?} expected {} results, got {}",
1365 inst,
1366 inst.results_len(),
1367 self.results.len()
1368 );
1369 self.stack.append(&mut self.results);
1370 }
1371
1372 fn push_block(&mut self) {
1373 self.bindgen.push_block();
1374 }
1375
1376 fn finish_block(&mut self, size: usize) {
1377 self.operands.clear();
1378 assert!(
1379 size <= self.stack.len(),
1380 "not enough operands on stack for finishing block",
1381 );
1382 self.operands
1383 .extend(self.stack.drain((self.stack.len() - size)..));
1384 self.bindgen.finish_block(&mut self.operands);
1385 }
1386
1387 fn lower(&mut self, ty: &Type) {
1388 use Instruction::*;
1389
1390 match *ty {
1391 Type::Bool => self.emit(&I32FromBool),
1392 Type::S8 => self.emit(&I32FromS8),
1393 Type::U8 => self.emit(&I32FromU8),
1394 Type::S16 => self.emit(&I32FromS16),
1395 Type::U16 => self.emit(&I32FromU16),
1396 Type::S32 => self.emit(&I32FromS32),
1397 Type::U32 => self.emit(&I32FromU32),
1398 Type::S64 => self.emit(&I64FromS64),
1399 Type::U64 => self.emit(&I64FromU64),
1400 Type::Char => self.emit(&I32FromChar),
1401 Type::F32 => self.emit(&CoreF32FromF32),
1402 Type::F64 => self.emit(&CoreF64FromF64),
1403 Type::String => {
1404 let realloc = self.list_realloc();
1405 self.emit(&StringLower { realloc });
1406 }
1407 Type::ErrorContext => self.emit(&ErrorContextLower),
1408 Type::Id(id) => match &self.resolve.types[id].kind {
1409 TypeDefKind::Type(t) => self.lower(t),
1410 TypeDefKind::List(element) => {
1411 let realloc = self.list_realloc();
1412 if self.bindgen.is_list_canonical(self.resolve, element) {
1413 self.emit(&ListCanonLower { element, realloc });
1414 } else {
1415 self.push_block();
1416 self.emit(&IterElem { element });
1417 self.emit(&IterBasePointer);
1418 let addr = self.stack.pop().unwrap();
1419 self.write_to_memory(element, addr, Default::default());
1420 self.finish_block(0);
1421 self.emit(&ListLower { element, realloc });
1422 }
1423 }
1424 TypeDefKind::Handle(handle) => {
1425 let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
1426 self.emit(&HandleLower {
1427 handle,
1428 ty: id,
1429 name: self.resolve.types[*ty].name.as_deref().unwrap(),
1430 });
1431 }
1432 TypeDefKind::Resource => {
1433 todo!();
1434 }
1435 TypeDefKind::Record(record) => {
1436 self.emit(&RecordLower {
1437 record,
1438 ty: id,
1439 name: self.resolve.types[id].name.as_deref().unwrap(),
1440 });
1441 let values = self
1442 .stack
1443 .drain(self.stack.len() - record.fields.len()..)
1444 .collect::<Vec<_>>();
1445 for (field, value) in record.fields.iter().zip(values) {
1446 self.stack.push(value);
1447 self.lower(&field.ty);
1448 }
1449 }
1450 TypeDefKind::Tuple(tuple) => {
1451 self.emit(&TupleLower { tuple, ty: id });
1452 let values = self
1453 .stack
1454 .drain(self.stack.len() - tuple.types.len()..)
1455 .collect::<Vec<_>>();
1456 for (ty, value) in tuple.types.iter().zip(values) {
1457 self.stack.push(value);
1458 self.lower(ty);
1459 }
1460 }
1461
1462 TypeDefKind::Flags(flags) => {
1463 self.emit(&FlagsLower {
1464 flags,
1465 ty: id,
1466 name: self.resolve.types[id].name.as_ref().unwrap(),
1467 });
1468 }
1469
1470 TypeDefKind::Variant(v) => {
1471 let results =
1472 self.lower_variant_arms(ty, v.cases.iter().map(|c| c.ty.as_ref()));
1473 self.emit(&VariantLower {
1474 variant: v,
1475 ty: id,
1476 results: &results,
1477 name: self.resolve.types[id].name.as_deref().unwrap(),
1478 });
1479 }
1480 TypeDefKind::Enum(enum_) => {
1481 self.emit(&EnumLower {
1482 enum_,
1483 ty: id,
1484 name: self.resolve.types[id].name.as_deref().unwrap(),
1485 });
1486 }
1487 TypeDefKind::Option(t) => {
1488 let results = self.lower_variant_arms(ty, [None, Some(t)]);
1489 self.emit(&OptionLower {
1490 payload: t,
1491 ty: id,
1492 results: &results,
1493 });
1494 }
1495 TypeDefKind::Result(r) => {
1496 let results = self.lower_variant_arms(ty, [r.ok.as_ref(), r.err.as_ref()]);
1497 self.emit(&ResultLower {
1498 result: r,
1499 ty: id,
1500 results: &results,
1501 });
1502 }
1503 TypeDefKind::Future(ty) => {
1504 self.emit(&FutureLower {
1505 payload: ty,
1506 ty: id,
1507 });
1508 }
1509 TypeDefKind::Stream(ty) => {
1510 self.emit(&StreamLower {
1511 payload: ty,
1512 ty: id,
1513 });
1514 }
1515 TypeDefKind::Unknown => unreachable!(),
1516 TypeDefKind::FixedSizeList(..) => todo!(),
1517 },
1518 }
1519 }
1520
1521 fn lower_variant_arms<'b>(
1522 &mut self,
1523 ty: &Type,
1524 cases: impl IntoIterator<Item = Option<&'b Type>>,
1525 ) -> Vec<WasmType> {
1526 use Instruction::*;
1527 let results = flat_types(self.resolve, ty, None).unwrap();
1528 let mut casts = Vec::new();
1529 for (i, ty) in cases.into_iter().enumerate() {
1530 self.push_block();
1531 self.emit(&VariantPayloadName);
1532 let payload_name = self.stack.pop().unwrap();
1533 self.emit(&I32Const { val: i as i32 });
1534 let mut pushed = 1;
1535 if let Some(ty) = ty {
1536 // Using the payload of this block we lower the type to
1537 // raw wasm values.
1538 self.stack.push(payload_name);
1539 self.lower(ty);
1540
1541 // Determine the types of all the wasm values we just
1542 // pushed, and record how many. If we pushed too few
1543 // then we'll need to push some zeros after this.
1544 let temp = flat_types(self.resolve, ty, None).unwrap();
1545 pushed += temp.len();
1546
1547 // For all the types pushed we may need to insert some
1548 // bitcasts. This will go through and cast everything
1549 // to the right type to ensure all blocks produce the
1550 // same set of results.
1551 casts.truncate(0);
1552 for (actual, expected) in temp.iter().zip(&results[1..]) {
1553 casts.push(cast(*actual, *expected));
1554 }
1555 if casts.iter().any(|c| *c != Bitcast::None) {
1556 self.emit(&Bitcasts { casts: &casts });
1557 }
1558 }
1559
1560 // If we haven't pushed enough items in this block to match
1561 // what other variants are pushing then we need to push
1562 // some zeros.
1563 if pushed < results.len() {
1564 self.emit(&ConstZero {
1565 tys: &results[pushed..],
1566 });
1567 }
1568 self.finish_block(results.len());
1569 }
1570 results
1571 }
1572
1573 fn list_realloc(&self) -> Option<&'static str> {
1574 match self.realloc.expect("realloc should be configured") {
1575 Realloc::None => None,
1576 Realloc::Export(s) => Some(s),
1577 }
1578 }
1579
1580 /// Note that in general everything in this function is the opposite of the
1581 /// `lower` function above. This is intentional and should be kept this way!
1582 fn lift(&mut self, ty: &Type) {
1583 use Instruction::*;
1584
1585 match *ty {
1586 Type::Bool => self.emit(&BoolFromI32),
1587 Type::S8 => self.emit(&S8FromI32),
1588 Type::U8 => self.emit(&U8FromI32),
1589 Type::S16 => self.emit(&S16FromI32),
1590 Type::U16 => self.emit(&U16FromI32),
1591 Type::S32 => self.emit(&S32FromI32),
1592 Type::U32 => self.emit(&U32FromI32),
1593 Type::S64 => self.emit(&S64FromI64),
1594 Type::U64 => self.emit(&U64FromI64),
1595 Type::Char => self.emit(&CharFromI32),
1596 Type::F32 => self.emit(&F32FromCoreF32),
1597 Type::F64 => self.emit(&F64FromCoreF64),
1598 Type::String => self.emit(&StringLift),
1599 Type::ErrorContext => self.emit(&ErrorContextLift),
1600 Type::Id(id) => match &self.resolve.types[id].kind {
1601 TypeDefKind::Type(t) => self.lift(t),
1602 TypeDefKind::List(element) => {
1603 if self.bindgen.is_list_canonical(self.resolve, element) {
1604 self.emit(&ListCanonLift { element, ty: id });
1605 } else {
1606 self.push_block();
1607 self.emit(&IterBasePointer);
1608 let addr = self.stack.pop().unwrap();
1609 self.read_from_memory(element, addr, Default::default());
1610 self.finish_block(1);
1611 self.emit(&ListLift { element, ty: id });
1612 }
1613 }
1614 TypeDefKind::Handle(handle) => {
1615 let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
1616 self.emit(&HandleLift {
1617 handle,
1618 ty: id,
1619 name: self.resolve.types[*ty].name.as_deref().unwrap(),
1620 });
1621 }
1622 TypeDefKind::Resource => {
1623 todo!();
1624 }
1625 TypeDefKind::Record(record) => {
1626 self.flat_for_each_record_type(
1627 ty,
1628 record.fields.iter().map(|f| &f.ty),
1629 Self::lift,
1630 );
1631 self.emit(&RecordLift {
1632 record,
1633 ty: id,
1634 name: self.resolve.types[id].name.as_deref().unwrap(),
1635 });
1636 }
1637 TypeDefKind::Tuple(tuple) => {
1638 self.flat_for_each_record_type(ty, tuple.types.iter(), Self::lift);
1639 self.emit(&TupleLift { tuple, ty: id });
1640 }
1641 TypeDefKind::Flags(flags) => {
1642 self.emit(&FlagsLift {
1643 flags,
1644 ty: id,
1645 name: self.resolve.types[id].name.as_ref().unwrap(),
1646 });
1647 }
1648
1649 TypeDefKind::Variant(v) => {
1650 self.flat_for_each_variant_arm(
1651 ty,
1652 true,
1653 v.cases.iter().map(|c| c.ty.as_ref()),
1654 Self::lift,
1655 );
1656 self.emit(&VariantLift {
1657 variant: v,
1658 ty: id,
1659 name: self.resolve.types[id].name.as_deref().unwrap(),
1660 });
1661 }
1662
1663 TypeDefKind::Enum(enum_) => {
1664 self.emit(&EnumLift {
1665 enum_,
1666 ty: id,
1667 name: self.resolve.types[id].name.as_deref().unwrap(),
1668 });
1669 }
1670
1671 TypeDefKind::Option(t) => {
1672 self.flat_for_each_variant_arm(ty, true, [None, Some(t)], Self::lift);
1673 self.emit(&OptionLift { payload: t, ty: id });
1674 }
1675
1676 TypeDefKind::Result(r) => {
1677 self.flat_for_each_variant_arm(
1678 ty,
1679 true,
1680 [r.ok.as_ref(), r.err.as_ref()],
1681 Self::lift,
1682 );
1683 self.emit(&ResultLift { result: r, ty: id });
1684 }
1685
1686 TypeDefKind::Future(ty) => {
1687 self.emit(&FutureLift {
1688 payload: ty,
1689 ty: id,
1690 });
1691 }
1692 TypeDefKind::Stream(ty) => {
1693 self.emit(&StreamLift {
1694 payload: ty,
1695 ty: id,
1696 });
1697 }
1698 TypeDefKind::Unknown => unreachable!(),
1699 TypeDefKind::FixedSizeList(..) => todo!(),
1700 },
1701 }
1702 }
1703
1704 fn flat_for_each_record_type<'b>(
1705 &mut self,
1706 container: &Type,
1707 types: impl Iterator<Item = &'b Type>,
1708 mut iter: impl FnMut(&mut Self, &Type),
1709 ) {
1710 let temp = flat_types(self.resolve, container, None).unwrap();
1711 let mut args = self
1712 .stack
1713 .drain(self.stack.len() - temp.len()..)
1714 .collect::<Vec<_>>();
1715 for ty in types {
1716 let temp = flat_types(self.resolve, ty, None).unwrap();
1717 self.stack.extend(args.drain(..temp.len()));
1718 iter(self, ty);
1719 }
1720 }
1721
1722 fn flat_for_each_variant_arm<'b>(
1723 &mut self,
1724 ty: &Type,
1725 blocks_with_type_have_result: bool,
1726 cases: impl IntoIterator<Item = Option<&'b Type>>,
1727 mut iter: impl FnMut(&mut Self, &Type),
1728 ) {
1729 let params = flat_types(self.resolve, ty, None).unwrap();
1730 let mut casts = Vec::new();
1731 let block_inputs = self
1732 .stack
1733 .drain(self.stack.len() + 1 - params.len()..)
1734 .collect::<Vec<_>>();
1735 for ty in cases {
1736 self.push_block();
1737 if let Some(ty) = ty {
1738 // Push only the values we need for this variant onto
1739 // the stack.
1740 let temp = flat_types(self.resolve, ty, None).unwrap();
1741 self.stack
1742 .extend(block_inputs[..temp.len()].iter().cloned());
1743
1744 // Cast all the types we have on the stack to the actual
1745 // types needed for this variant, if necessary.
1746 casts.truncate(0);
1747 for (actual, expected) in temp.iter().zip(¶ms[1..]) {
1748 casts.push(cast(*expected, *actual));
1749 }
1750 if casts.iter().any(|c| *c != Bitcast::None) {
1751 self.emit(&Instruction::Bitcasts { casts: &casts });
1752 }
1753
1754 // Then recursively lift this variant's payload.
1755 iter(self, ty);
1756 }
1757 self.finish_block(if blocks_with_type_have_result {
1758 ty.is_some() as usize
1759 } else {
1760 0
1761 });
1762 }
1763 }
1764
1765 fn write_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1766 use Instruction::*;
1767
1768 match *ty {
1769 // Builtin types need different flavors of storage instructions
1770 // depending on the size of the value written.
1771 Type::Bool | Type::U8 | Type::S8 => {
1772 self.lower_and_emit(ty, addr, &I32Store8 { offset })
1773 }
1774 Type::U16 | Type::S16 => self.lower_and_emit(ty, addr, &I32Store16 { offset }),
1775 Type::U32 | Type::S32 | Type::Char => {
1776 self.lower_and_emit(ty, addr, &I32Store { offset })
1777 }
1778 Type::U64 | Type::S64 => self.lower_and_emit(ty, addr, &I64Store { offset }),
1779 Type::F32 => self.lower_and_emit(ty, addr, &F32Store { offset }),
1780 Type::F64 => self.lower_and_emit(ty, addr, &F64Store { offset }),
1781 Type::String => self.write_list_to_memory(ty, addr, offset),
1782 Type::ErrorContext => self.lower_and_emit(ty, addr, &I32Store { offset }),
1783
1784 Type::Id(id) => match &self.resolve.types[id].kind {
1785 TypeDefKind::Type(t) => self.write_to_memory(t, addr, offset),
1786 TypeDefKind::List(_) => self.write_list_to_memory(ty, addr, offset),
1787
1788 TypeDefKind::Future(_) | TypeDefKind::Stream(_) | TypeDefKind::Handle(_) => {
1789 self.lower_and_emit(ty, addr, &I32Store { offset })
1790 }
1791
1792 // Decompose the record into its components and then write all
1793 // the components into memory one-by-one.
1794 TypeDefKind::Record(record) => {
1795 self.emit(&RecordLower {
1796 record,
1797 ty: id,
1798 name: self.resolve.types[id].name.as_deref().unwrap(),
1799 });
1800 self.write_fields_to_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
1801 }
1802 TypeDefKind::Resource => {
1803 todo!()
1804 }
1805 TypeDefKind::Tuple(tuple) => {
1806 self.emit(&TupleLower { tuple, ty: id });
1807 self.write_fields_to_memory(tuple.types.iter(), addr, offset);
1808 }
1809
1810 TypeDefKind::Flags(f) => {
1811 self.lower(ty);
1812 match f.repr() {
1813 FlagsRepr::U8 => {
1814 self.stack.push(addr);
1815 self.store_intrepr(offset, Int::U8);
1816 }
1817 FlagsRepr::U16 => {
1818 self.stack.push(addr);
1819 self.store_intrepr(offset, Int::U16);
1820 }
1821 FlagsRepr::U32(n) => {
1822 for i in (0..n).rev() {
1823 self.stack.push(addr.clone());
1824 self.emit(&I32Store {
1825 offset: offset.add_bytes(i * 4),
1826 });
1827 }
1828 }
1829 }
1830 }
1831
1832 // Each case will get its own block, and the first item in each
1833 // case is writing the discriminant. After that if we have a
1834 // payload we write the payload after the discriminant, aligned up
1835 // to the type's alignment.
1836 TypeDefKind::Variant(v) => {
1837 self.write_variant_arms_to_memory(
1838 offset,
1839 addr,
1840 v.tag(),
1841 v.cases.iter().map(|c| c.ty.as_ref()),
1842 );
1843 self.emit(&VariantLower {
1844 variant: v,
1845 ty: id,
1846 results: &[],
1847 name: self.resolve.types[id].name.as_deref().unwrap(),
1848 });
1849 }
1850
1851 TypeDefKind::Option(t) => {
1852 self.write_variant_arms_to_memory(offset, addr, Int::U8, [None, Some(t)]);
1853 self.emit(&OptionLower {
1854 payload: t,
1855 ty: id,
1856 results: &[],
1857 });
1858 }
1859
1860 TypeDefKind::Result(r) => {
1861 self.write_variant_arms_to_memory(
1862 offset,
1863 addr,
1864 Int::U8,
1865 [r.ok.as_ref(), r.err.as_ref()],
1866 );
1867 self.emit(&ResultLower {
1868 result: r,
1869 ty: id,
1870 results: &[],
1871 });
1872 }
1873
1874 TypeDefKind::Enum(e) => {
1875 self.lower(ty);
1876 self.stack.push(addr);
1877 self.store_intrepr(offset, e.tag());
1878 }
1879
1880 TypeDefKind::Unknown => unreachable!(),
1881 TypeDefKind::FixedSizeList(..) => todo!(),
1882 },
1883 }
1884 }
1885
1886 fn write_params_to_memory<'b>(
1887 &mut self,
1888 params: impl IntoIterator<Item = &'b Type, IntoIter: ExactSizeIterator>,
1889 addr: B::Operand,
1890 offset: ArchitectureSize,
1891 ) {
1892 self.write_fields_to_memory(params, addr, offset);
1893 }
1894
1895 fn write_variant_arms_to_memory<'b>(
1896 &mut self,
1897 offset: ArchitectureSize,
1898 addr: B::Operand,
1899 tag: Int,
1900 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
1901 ) {
1902 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
1903 for (i, ty) in cases.into_iter().enumerate() {
1904 self.push_block();
1905 self.emit(&Instruction::VariantPayloadName);
1906 let payload_name = self.stack.pop().unwrap();
1907 self.emit(&Instruction::I32Const { val: i as i32 });
1908 self.stack.push(addr.clone());
1909 self.store_intrepr(offset, tag);
1910 if let Some(ty) = ty {
1911 self.stack.push(payload_name.clone());
1912 self.write_to_memory(ty, addr.clone(), payload_offset);
1913 }
1914 self.finish_block(0);
1915 }
1916 }
1917
1918 fn write_list_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1919 // After lowering the list there's two i32 values on the stack
1920 // which we write into memory, writing the pointer into the low address
1921 // and the length into the high address.
1922 self.lower(ty);
1923 self.stack.push(addr.clone());
1924 self.emit(&Instruction::LengthStore {
1925 offset: offset + self.bindgen.sizes().align(ty).into(),
1926 });
1927 self.stack.push(addr);
1928 self.emit(&Instruction::PointerStore { offset });
1929 }
1930
1931 fn write_fields_to_memory<'b>(
1932 &mut self,
1933 tys: impl IntoIterator<Item = &'b Type, IntoIter: ExactSizeIterator>,
1934 addr: B::Operand,
1935 offset: ArchitectureSize,
1936 ) {
1937 let tys = tys.into_iter();
1938 let fields = self
1939 .stack
1940 .drain(self.stack.len() - tys.len()..)
1941 .collect::<Vec<_>>();
1942 for ((field_offset, ty), op) in self
1943 .bindgen
1944 .sizes()
1945 .field_offsets(tys)
1946 .into_iter()
1947 .zip(fields)
1948 {
1949 self.stack.push(op);
1950 self.write_to_memory(ty, addr.clone(), offset + (field_offset));
1951 }
1952 }
1953
1954 fn lower_and_emit(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
1955 self.lower(ty);
1956 self.stack.push(addr);
1957 self.emit(instr);
1958 }
1959
1960 fn read_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1961 use Instruction::*;
1962
1963 match *ty {
1964 Type::Bool => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
1965 Type::U8 => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
1966 Type::S8 => self.emit_and_lift(ty, addr, &I32Load8S { offset }),
1967 Type::U16 => self.emit_and_lift(ty, addr, &I32Load16U { offset }),
1968 Type::S16 => self.emit_and_lift(ty, addr, &I32Load16S { offset }),
1969 Type::U32 | Type::S32 | Type::Char => self.emit_and_lift(ty, addr, &I32Load { offset }),
1970 Type::U64 | Type::S64 => self.emit_and_lift(ty, addr, &I64Load { offset }),
1971 Type::F32 => self.emit_and_lift(ty, addr, &F32Load { offset }),
1972 Type::F64 => self.emit_and_lift(ty, addr, &F64Load { offset }),
1973 Type::String => self.read_list_from_memory(ty, addr, offset),
1974 Type::ErrorContext => self.emit_and_lift(ty, addr, &I32Load { offset }),
1975
1976 Type::Id(id) => match &self.resolve.types[id].kind {
1977 TypeDefKind::Type(t) => self.read_from_memory(t, addr, offset),
1978
1979 TypeDefKind::List(_) => self.read_list_from_memory(ty, addr, offset),
1980
1981 TypeDefKind::Future(_) | TypeDefKind::Stream(_) | TypeDefKind::Handle(_) => {
1982 self.emit_and_lift(ty, addr, &I32Load { offset })
1983 }
1984
1985 TypeDefKind::Resource => {
1986 todo!();
1987 }
1988
1989 // Read and lift each field individually, adjusting the offset
1990 // as we go along, then aggregate all the fields into the
1991 // record.
1992 TypeDefKind::Record(record) => {
1993 self.read_fields_from_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
1994 self.emit(&RecordLift {
1995 record,
1996 ty: id,
1997 name: self.resolve.types[id].name.as_deref().unwrap(),
1998 });
1999 }
2000
2001 TypeDefKind::Tuple(tuple) => {
2002 self.read_fields_from_memory(&tuple.types, addr, offset);
2003 self.emit(&TupleLift { tuple, ty: id });
2004 }
2005
2006 TypeDefKind::Flags(f) => {
2007 match f.repr() {
2008 FlagsRepr::U8 => {
2009 self.stack.push(addr);
2010 self.load_intrepr(offset, Int::U8);
2011 }
2012 FlagsRepr::U16 => {
2013 self.stack.push(addr);
2014 self.load_intrepr(offset, Int::U16);
2015 }
2016 FlagsRepr::U32(n) => {
2017 for i in 0..n {
2018 self.stack.push(addr.clone());
2019 self.emit(&I32Load {
2020 offset: offset.add_bytes(i * 4),
2021 });
2022 }
2023 }
2024 }
2025 self.lift(ty);
2026 }
2027
2028 // Each case will get its own block, and we'll dispatch to the
2029 // right block based on the `i32.load` we initially perform. Each
2030 // individual block is pretty simple and just reads the payload type
2031 // from the corresponding offset if one is available.
2032 TypeDefKind::Variant(variant) => {
2033 self.read_variant_arms_from_memory(
2034 offset,
2035 addr,
2036 variant.tag(),
2037 variant.cases.iter().map(|c| c.ty.as_ref()),
2038 );
2039 self.emit(&VariantLift {
2040 variant,
2041 ty: id,
2042 name: self.resolve.types[id].name.as_deref().unwrap(),
2043 });
2044 }
2045
2046 TypeDefKind::Option(t) => {
2047 self.read_variant_arms_from_memory(offset, addr, Int::U8, [None, Some(t)]);
2048 self.emit(&OptionLift { payload: t, ty: id });
2049 }
2050
2051 TypeDefKind::Result(r) => {
2052 self.read_variant_arms_from_memory(
2053 offset,
2054 addr,
2055 Int::U8,
2056 [r.ok.as_ref(), r.err.as_ref()],
2057 );
2058 self.emit(&ResultLift { result: r, ty: id });
2059 }
2060
2061 TypeDefKind::Enum(e) => {
2062 self.stack.push(addr.clone());
2063 self.load_intrepr(offset, e.tag());
2064 self.lift(ty);
2065 }
2066
2067 TypeDefKind::Unknown => unreachable!(),
2068 TypeDefKind::FixedSizeList(..) => todo!(),
2069 },
2070 }
2071 }
2072
2073 fn read_results_from_memory(
2074 &mut self,
2075 result: &Option<Type>,
2076 addr: B::Operand,
2077 offset: ArchitectureSize,
2078 ) {
2079 self.read_fields_from_memory(result, addr, offset)
2080 }
2081
2082 fn read_variant_arms_from_memory<'b>(
2083 &mut self,
2084 offset: ArchitectureSize,
2085 addr: B::Operand,
2086 tag: Int,
2087 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
2088 ) {
2089 self.stack.push(addr.clone());
2090 self.load_intrepr(offset, tag);
2091 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
2092 for ty in cases {
2093 self.push_block();
2094 if let Some(ty) = ty {
2095 self.read_from_memory(ty, addr.clone(), payload_offset);
2096 }
2097 self.finish_block(ty.is_some() as usize);
2098 }
2099 }
2100
2101 fn read_list_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
2102 // Read the pointer/len and then perform the standard lifting
2103 // proceses.
2104 self.stack.push(addr.clone());
2105 self.emit(&Instruction::PointerLoad { offset });
2106 self.stack.push(addr);
2107 self.emit(&Instruction::LengthLoad {
2108 offset: offset + self.bindgen.sizes().align(ty).into(),
2109 });
2110 self.lift(ty);
2111 }
2112
2113 fn read_fields_from_memory<'b>(
2114 &mut self,
2115 tys: impl IntoIterator<Item = &'b Type>,
2116 addr: B::Operand,
2117 offset: ArchitectureSize,
2118 ) {
2119 for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys).iter() {
2120 self.read_from_memory(ty, addr.clone(), offset + (*field_offset));
2121 }
2122 }
2123
2124 fn emit_and_lift(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
2125 self.stack.push(addr);
2126 self.emit(instr);
2127 self.lift(ty);
2128 }
2129
2130 fn load_intrepr(&mut self, offset: ArchitectureSize, repr: Int) {
2131 self.emit(&match repr {
2132 Int::U64 => Instruction::I64Load { offset },
2133 Int::U32 => Instruction::I32Load { offset },
2134 Int::U16 => Instruction::I32Load16U { offset },
2135 Int::U8 => Instruction::I32Load8U { offset },
2136 });
2137 }
2138
2139 fn store_intrepr(&mut self, offset: ArchitectureSize, repr: Int) {
2140 self.emit(&match repr {
2141 Int::U64 => Instruction::I64Store { offset },
2142 Int::U32 => Instruction::I32Store { offset },
2143 Int::U16 => Instruction::I32Store16 { offset },
2144 Int::U8 => Instruction::I32Store8 { offset },
2145 });
2146 }
2147
2148 /// Runs the deallocation of `ty` for the operands currently on
2149 /// `self.stack`.
2150 ///
2151 /// This will pop the ABI items of `ty` from `self.stack`.
2152 fn deallocate(&mut self, ty: &Type, what: Deallocate) {
2153 use Instruction::*;
2154
2155 match *ty {
2156 Type::String => {
2157 self.emit(&Instruction::GuestDeallocateString);
2158 }
2159
2160 Type::Bool
2161 | Type::U8
2162 | Type::S8
2163 | Type::U16
2164 | Type::S16
2165 | Type::U32
2166 | Type::S32
2167 | Type::Char
2168 | Type::U64
2169 | Type::S64
2170 | Type::F32
2171 | Type::F64
2172 | Type::ErrorContext => {
2173 // No deallocation necessary, just discard the operand on the
2174 // stack.
2175 self.stack.pop().unwrap();
2176 }
2177
2178 Type::Id(id) => match &self.resolve.types[id].kind {
2179 TypeDefKind::Type(t) => self.deallocate(t, what),
2180
2181 TypeDefKind::List(element) => {
2182 self.push_block();
2183 self.emit(&IterBasePointer);
2184 let elemaddr = self.stack.pop().unwrap();
2185 self.deallocate_indirect(element, elemaddr, Default::default(), what);
2186 self.finish_block(0);
2187
2188 self.emit(&Instruction::GuestDeallocateList { element });
2189 }
2190
2191 TypeDefKind::Handle(Handle::Own(_))
2192 | TypeDefKind::Future(_)
2193 | TypeDefKind::Stream(_)
2194 if what.handles() =>
2195 {
2196 self.lift(ty);
2197 self.emit(&DropHandle { ty });
2198 }
2199
2200 TypeDefKind::Record(record) => {
2201 self.flat_for_each_record_type(
2202 ty,
2203 record.fields.iter().map(|f| &f.ty),
2204 |me, ty| me.deallocate(ty, what),
2205 );
2206 }
2207
2208 TypeDefKind::Tuple(tuple) => {
2209 self.flat_for_each_record_type(ty, tuple.types.iter(), |me, ty| {
2210 me.deallocate(ty, what)
2211 });
2212 }
2213
2214 TypeDefKind::Variant(variant) => {
2215 self.flat_for_each_variant_arm(
2216 ty,
2217 false,
2218 variant.cases.iter().map(|c| c.ty.as_ref()),
2219 |me, ty| me.deallocate(ty, what),
2220 );
2221 self.emit(&GuestDeallocateVariant {
2222 blocks: variant.cases.len(),
2223 });
2224 }
2225
2226 TypeDefKind::Option(t) => {
2227 self.flat_for_each_variant_arm(ty, false, [None, Some(t)], |me, ty| {
2228 me.deallocate(ty, what)
2229 });
2230 self.emit(&GuestDeallocateVariant { blocks: 2 });
2231 }
2232
2233 TypeDefKind::Result(e) => {
2234 self.flat_for_each_variant_arm(
2235 ty,
2236 false,
2237 [e.ok.as_ref(), e.err.as_ref()],
2238 |me, ty| me.deallocate(ty, what),
2239 );
2240 self.emit(&GuestDeallocateVariant { blocks: 2 });
2241 }
2242
2243 // discard the operand on the stack, otherwise nothing to free.
2244 TypeDefKind::Flags(_)
2245 | TypeDefKind::Enum(_)
2246 | TypeDefKind::Future(_)
2247 | TypeDefKind::Stream(_)
2248 | TypeDefKind::Handle(Handle::Own(_))
2249 | TypeDefKind::Handle(Handle::Borrow(_)) => {
2250 self.stack.pop().unwrap();
2251 }
2252
2253 TypeDefKind::Resource => unreachable!(),
2254 TypeDefKind::Unknown => unreachable!(),
2255
2256 TypeDefKind::FixedSizeList(..) => todo!(),
2257 },
2258 }
2259 }
2260
2261 fn deallocate_indirect(
2262 &mut self,
2263 ty: &Type,
2264 addr: B::Operand,
2265 offset: ArchitectureSize,
2266 what: Deallocate,
2267 ) {
2268 use Instruction::*;
2269
2270 // No need to execute any instructions if this type itself doesn't
2271 // require any form of post-return.
2272 if !needs_deallocate(self.resolve, ty, what) {
2273 return;
2274 }
2275
2276 match *ty {
2277 Type::String => {
2278 self.stack.push(addr.clone());
2279 self.emit(&Instruction::PointerLoad { offset });
2280 self.stack.push(addr);
2281 self.emit(&Instruction::LengthLoad {
2282 offset: offset + self.bindgen.sizes().align(ty).into(),
2283 });
2284 self.deallocate(ty, what);
2285 }
2286
2287 Type::Bool
2288 | Type::U8
2289 | Type::S8
2290 | Type::U16
2291 | Type::S16
2292 | Type::U32
2293 | Type::S32
2294 | Type::Char
2295 | Type::U64
2296 | Type::S64
2297 | Type::F32
2298 | Type::F64
2299 | Type::ErrorContext => {}
2300
2301 Type::Id(id) => match &self.resolve.types[id].kind {
2302 TypeDefKind::Type(t) => self.deallocate_indirect(t, addr, offset, what),
2303
2304 TypeDefKind::List(_) => {
2305 self.stack.push(addr.clone());
2306 self.emit(&Instruction::PointerLoad { offset });
2307 self.stack.push(addr);
2308 self.emit(&Instruction::LengthLoad {
2309 offset: offset + self.bindgen.sizes().align(ty).into(),
2310 });
2311
2312 self.deallocate(ty, what);
2313 }
2314
2315 TypeDefKind::Handle(Handle::Own(_))
2316 | TypeDefKind::Future(_)
2317 | TypeDefKind::Stream(_)
2318 if what.handles() =>
2319 {
2320 self.read_from_memory(ty, addr, offset);
2321 self.emit(&DropHandle { ty });
2322 }
2323
2324 TypeDefKind::Handle(Handle::Own(_)) => unreachable!(),
2325 TypeDefKind::Handle(Handle::Borrow(_)) => unreachable!(),
2326 TypeDefKind::Resource => unreachable!(),
2327
2328 TypeDefKind::Record(record) => {
2329 self.deallocate_indirect_fields(
2330 &record.fields.iter().map(|f| f.ty).collect::<Vec<_>>(),
2331 addr,
2332 offset,
2333 what,
2334 );
2335 }
2336
2337 TypeDefKind::Tuple(tuple) => {
2338 self.deallocate_indirect_fields(&tuple.types, addr, offset, what);
2339 }
2340
2341 TypeDefKind::Flags(_) => {}
2342
2343 TypeDefKind::Variant(variant) => {
2344 self.deallocate_indirect_variant(
2345 offset,
2346 addr,
2347 variant.tag(),
2348 variant.cases.iter().map(|c| c.ty.as_ref()),
2349 what,
2350 );
2351 self.emit(&GuestDeallocateVariant {
2352 blocks: variant.cases.len(),
2353 });
2354 }
2355
2356 TypeDefKind::Option(t) => {
2357 self.deallocate_indirect_variant(offset, addr, Int::U8, [None, Some(t)], what);
2358 self.emit(&GuestDeallocateVariant { blocks: 2 });
2359 }
2360
2361 TypeDefKind::Result(e) => {
2362 self.deallocate_indirect_variant(
2363 offset,
2364 addr,
2365 Int::U8,
2366 [e.ok.as_ref(), e.err.as_ref()],
2367 what,
2368 );
2369 self.emit(&GuestDeallocateVariant { blocks: 2 });
2370 }
2371
2372 TypeDefKind::Enum(_) => {}
2373
2374 TypeDefKind::Future(_) => unreachable!(),
2375 TypeDefKind::Stream(_) => unreachable!(),
2376 TypeDefKind::Unknown => unreachable!(),
2377 TypeDefKind::FixedSizeList(..) => todo!(),
2378 },
2379 }
2380 }
2381
2382 fn deallocate_indirect_variant<'b>(
2383 &mut self,
2384 offset: ArchitectureSize,
2385 addr: B::Operand,
2386 tag: Int,
2387 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
2388 what: Deallocate,
2389 ) {
2390 self.stack.push(addr.clone());
2391 self.load_intrepr(offset, tag);
2392 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
2393 for ty in cases {
2394 self.push_block();
2395 if let Some(ty) = ty {
2396 self.deallocate_indirect(ty, addr.clone(), payload_offset, what);
2397 }
2398 self.finish_block(0);
2399 }
2400 }
2401
2402 fn deallocate_indirect_fields(
2403 &mut self,
2404 tys: &[Type],
2405 addr: B::Operand,
2406 offset: ArchitectureSize,
2407 what: Deallocate,
2408 ) {
2409 for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys) {
2410 self.deallocate_indirect(ty, addr.clone(), offset + (field_offset), what);
2411 }
2412 }
2413}
2414
2415fn cast(from: WasmType, to: WasmType) -> Bitcast {
2416 use WasmType::*;
2417
2418 match (from, to) {
2419 (I32, I32)
2420 | (I64, I64)
2421 | (F32, F32)
2422 | (F64, F64)
2423 | (Pointer, Pointer)
2424 | (PointerOrI64, PointerOrI64)
2425 | (Length, Length) => Bitcast::None,
2426
2427 (I32, I64) => Bitcast::I32ToI64,
2428 (F32, I32) => Bitcast::F32ToI32,
2429 (F64, I64) => Bitcast::F64ToI64,
2430
2431 (I64, I32) => Bitcast::I64ToI32,
2432 (I32, F32) => Bitcast::I32ToF32,
2433 (I64, F64) => Bitcast::I64ToF64,
2434
2435 (F32, I64) => Bitcast::F32ToI64,
2436 (I64, F32) => Bitcast::I64ToF32,
2437
2438 (I64, PointerOrI64) => Bitcast::I64ToP64,
2439 (Pointer, PointerOrI64) => Bitcast::PToP64,
2440 (_, PointerOrI64) => {
2441 Bitcast::Sequence(Box::new([cast(from, I64), cast(I64, PointerOrI64)]))
2442 }
2443
2444 (PointerOrI64, I64) => Bitcast::P64ToI64,
2445 (PointerOrI64, Pointer) => Bitcast::P64ToP,
2446 (PointerOrI64, _) => Bitcast::Sequence(Box::new([cast(PointerOrI64, I64), cast(I64, to)])),
2447
2448 (I32, Pointer) => Bitcast::I32ToP,
2449 (Pointer, I32) => Bitcast::PToI32,
2450 (I32, Length) => Bitcast::I32ToL,
2451 (Length, I32) => Bitcast::LToI32,
2452 (I64, Length) => Bitcast::I64ToL,
2453 (Length, I64) => Bitcast::LToI64,
2454 (Pointer, Length) => Bitcast::PToL,
2455 (Length, Pointer) => Bitcast::LToP,
2456
2457 (F32, Pointer | Length) => Bitcast::Sequence(Box::new([cast(F32, I32), cast(I32, to)])),
2458 (Pointer | Length, F32) => Bitcast::Sequence(Box::new([cast(from, I32), cast(I32, F32)])),
2459
2460 (F32, F64)
2461 | (F64, F32)
2462 | (F64, I32)
2463 | (I32, F64)
2464 | (Pointer | Length, I64 | F64)
2465 | (I64 | F64, Pointer | Length) => {
2466 unreachable!("Don't know how to bitcast from {:?} to {:?}", from, to);
2467 }
2468 }
2469}
2470
2471/// Flatten types in a given type
2472///
2473/// It is sometimes necessary to restrict the number of max parameters dynamically,
2474/// for example during an async guest import call (flat params are limited to 4)
2475fn flat_types(resolve: &Resolve, ty: &Type, max_params: Option<usize>) -> Option<Vec<WasmType>> {
2476 let mut storage =
2477 iter::repeat_n(WasmType::I32, max_params.unwrap_or(MAX_FLAT_PARAMS)).collect::<Vec<_>>();
2478 let mut flat = FlatTypes::new(storage.as_mut_slice());
2479 if resolve.push_flat(ty, &mut flat) {
2480 Some(flat.to_vec())
2481 } else {
2482 None
2483 }
2484}