wit_bindgen_core/abi.rs
1use std::fmt;
2use std::iter;
3
4pub use wit_parser::abi::{AbiVariant, FlatTypes, WasmSignature, WasmType};
5use wit_parser::{
6 align_to_arch, Alignment, ArchitectureSize, ElementInfo, Enum, Flags, FlagsRepr, Function,
7 Handle, Int, Record, Resolve, Result_, SizeAlign, Tuple, Type, TypeDefKind, TypeId, Variant,
8};
9
10// Helper macro for defining instructions without having to have tons of
11// exhaustive `match` statements to update
12macro_rules! def_instruction {
13 (
14 $( #[$enum_attr:meta] )*
15 pub enum $name:ident<'a> {
16 $(
17 $( #[$attr:meta] )*
18 $variant:ident $( {
19 $($field:ident : $field_ty:ty $(,)* )*
20 } )?
21 :
22 [$num_popped:expr] => [$num_pushed:expr],
23 )*
24 }
25 ) => {
26 $( #[$enum_attr] )*
27 pub enum $name<'a> {
28 $(
29 $( #[$attr] )*
30 $variant $( {
31 $(
32 $field : $field_ty,
33 )*
34 } )? ,
35 )*
36 }
37
38 impl $name<'_> {
39 /// How many operands does this instruction pop from the stack?
40 #[allow(unused_variables)]
41 pub fn operands_len(&self) -> usize {
42 match self {
43 $(
44 Self::$variant $( {
45 $(
46 $field,
47 )*
48 } )? => $num_popped,
49 )*
50 }
51 }
52
53 /// How many results does this instruction push onto the stack?
54 #[allow(unused_variables)]
55 pub fn results_len(&self) -> usize {
56 match self {
57 $(
58 Self::$variant $( {
59 $(
60 $field,
61 )*
62 } )? => $num_pushed,
63 )*
64 }
65 }
66 }
67 };
68}
69
70def_instruction! {
71 #[derive(Debug)]
72 pub enum Instruction<'a> {
73 /// Acquires the specified parameter and places it on the stack.
74 /// Depending on the context this may refer to wasm parameters or
75 /// interface types parameters.
76 GetArg { nth: usize } : [0] => [1],
77
78 // Integer const/manipulation instructions
79
80 /// Pushes the constant `val` onto the stack.
81 I32Const { val: i32 } : [0] => [1],
82 /// Casts the top N items on the stack using the `Bitcast` enum
83 /// provided. Consumes the same number of operands that this produces.
84 Bitcasts { casts: &'a [Bitcast] } : [casts.len()] => [casts.len()],
85 /// Pushes a number of constant zeros for each wasm type on the stack.
86 ConstZero { tys: &'a [WasmType] } : [0] => [tys.len()],
87
88 // Memory load/store instructions
89
90 /// Pops a pointer from the stack and loads a little-endian `i32` from
91 /// it, using the specified constant offset.
92 I32Load { offset: ArchitectureSize } : [1] => [1],
93 /// Pops a pointer from the stack and loads a little-endian `i8` from
94 /// it, using the specified constant offset. The value loaded is the
95 /// zero-extended to 32-bits
96 I32Load8U { offset: ArchitectureSize } : [1] => [1],
97 /// Pops a pointer from the stack and loads a little-endian `i8` from
98 /// it, using the specified constant offset. The value loaded is the
99 /// sign-extended to 32-bits
100 I32Load8S { offset: ArchitectureSize } : [1] => [1],
101 /// Pops a pointer from the stack and loads a little-endian `i16` from
102 /// it, using the specified constant offset. The value loaded is the
103 /// zero-extended to 32-bits
104 I32Load16U { offset: ArchitectureSize } : [1] => [1],
105 /// Pops a pointer from the stack and loads a little-endian `i16` from
106 /// it, using the specified constant offset. The value loaded is the
107 /// sign-extended to 32-bits
108 I32Load16S { offset: ArchitectureSize } : [1] => [1],
109 /// Pops a pointer from the stack and loads a little-endian `i64` from
110 /// it, using the specified constant offset.
111 I64Load { offset: ArchitectureSize } : [1] => [1],
112 /// Pops a pointer from the stack and loads a little-endian `f32` from
113 /// it, using the specified constant offset.
114 F32Load { offset: ArchitectureSize } : [1] => [1],
115 /// Pops a pointer from the stack and loads a little-endian `f64` from
116 /// it, using the specified constant offset.
117 F64Load { offset: ArchitectureSize } : [1] => [1],
118
119 /// Like `I32Load` or `I64Load`, but for loading pointer values.
120 PointerLoad { offset: ArchitectureSize } : [1] => [1],
121 /// Like `I32Load` or `I64Load`, but for loading array length values.
122 LengthLoad { offset: ArchitectureSize } : [1] => [1],
123
124 /// Pops a pointer from the stack and then an `i32` value.
125 /// Stores the value in little-endian at the pointer specified plus the
126 /// constant `offset`.
127 I32Store { offset: ArchitectureSize } : [2] => [0],
128 /// Pops a pointer from the stack and then an `i32` value.
129 /// Stores the low 8 bits of the value in little-endian at the pointer
130 /// specified plus the constant `offset`.
131 I32Store8 { offset: ArchitectureSize } : [2] => [0],
132 /// Pops a pointer from the stack and then an `i32` value.
133 /// Stores the low 16 bits of the value in little-endian at the pointer
134 /// specified plus the constant `offset`.
135 I32Store16 { offset: ArchitectureSize } : [2] => [0],
136 /// Pops a pointer from the stack and then an `i64` value.
137 /// Stores the value in little-endian at the pointer specified plus the
138 /// constant `offset`.
139 I64Store { offset: ArchitectureSize } : [2] => [0],
140 /// Pops a pointer from the stack and then an `f32` value.
141 /// Stores the value in little-endian at the pointer specified plus the
142 /// constant `offset`.
143 F32Store { offset: ArchitectureSize } : [2] => [0],
144 /// Pops a pointer from the stack and then an `f64` value.
145 /// Stores the value in little-endian at the pointer specified plus the
146 /// constant `offset`.
147 F64Store { offset: ArchitectureSize } : [2] => [0],
148
149 /// Like `I32Store` or `I64Store`, but for storing pointer values.
150 PointerStore { offset: ArchitectureSize } : [2] => [0],
151 /// Like `I32Store` or `I64Store`, but for storing array length values.
152 LengthStore { offset: ArchitectureSize } : [2] => [0],
153
154 // Scalar lifting/lowering
155
156 /// Converts an interface type `char` value to a 32-bit integer
157 /// representing the unicode scalar value.
158 I32FromChar : [1] => [1],
159 /// Converts an interface type `u64` value to a wasm `i64`.
160 I64FromU64 : [1] => [1],
161 /// Converts an interface type `s64` value to a wasm `i64`.
162 I64FromS64 : [1] => [1],
163 /// Converts an interface type `u32` value to a wasm `i32`.
164 I32FromU32 : [1] => [1],
165 /// Converts an interface type `s32` value to a wasm `i32`.
166 I32FromS32 : [1] => [1],
167 /// Converts an interface type `u16` value to a wasm `i32`.
168 I32FromU16 : [1] => [1],
169 /// Converts an interface type `s16` value to a wasm `i32`.
170 I32FromS16 : [1] => [1],
171 /// Converts an interface type `u8` value to a wasm `i32`.
172 I32FromU8 : [1] => [1],
173 /// Converts an interface type `s8` value to a wasm `i32`.
174 I32FromS8 : [1] => [1],
175 /// Conversion an interface type `f32` value to a wasm `f32`.
176 ///
177 /// This may be a noop for some implementations, but it's here in case the
178 /// native language representation of `f32` is different than the wasm
179 /// representation of `f32`.
180 CoreF32FromF32 : [1] => [1],
181 /// Conversion an interface type `f64` value to a wasm `f64`.
182 ///
183 /// This may be a noop for some implementations, but it's here in case the
184 /// native language representation of `f64` is different than the wasm
185 /// representation of `f64`.
186 CoreF64FromF64 : [1] => [1],
187
188 /// Converts a native wasm `i32` to an interface type `s8`.
189 ///
190 /// This will truncate the upper bits of the `i32`.
191 S8FromI32 : [1] => [1],
192 /// Converts a native wasm `i32` to an interface type `u8`.
193 ///
194 /// This will truncate the upper bits of the `i32`.
195 U8FromI32 : [1] => [1],
196 /// Converts a native wasm `i32` to an interface type `s16`.
197 ///
198 /// This will truncate the upper bits of the `i32`.
199 S16FromI32 : [1] => [1],
200 /// Converts a native wasm `i32` to an interface type `u16`.
201 ///
202 /// This will truncate the upper bits of the `i32`.
203 U16FromI32 : [1] => [1],
204 /// Converts a native wasm `i32` to an interface type `s32`.
205 S32FromI32 : [1] => [1],
206 /// Converts a native wasm `i32` to an interface type `u32`.
207 U32FromI32 : [1] => [1],
208 /// Converts a native wasm `i64` to an interface type `s64`.
209 S64FromI64 : [1] => [1],
210 /// Converts a native wasm `i64` to an interface type `u64`.
211 U64FromI64 : [1] => [1],
212 /// Converts a native wasm `i32` to an interface type `char`.
213 ///
214 /// It's safe to assume that the `i32` is indeed a valid unicode code point.
215 CharFromI32 : [1] => [1],
216 /// Converts a native wasm `f32` to an interface type `f32`.
217 F32FromCoreF32 : [1] => [1],
218 /// Converts a native wasm `f64` to an interface type `f64`.
219 F64FromCoreF64 : [1] => [1],
220
221 /// Creates a `bool` from an `i32` input, trapping if the `i32` isn't
222 /// zero or one.
223 BoolFromI32 : [1] => [1],
224 /// Creates an `i32` from a `bool` input, must return 0 or 1.
225 I32FromBool : [1] => [1],
226
227 // lists
228
229 /// Lowers a list where the element's layout in the native language is
230 /// expected to match the canonical ABI definition of interface types.
231 ///
232 /// Pops a list value from the stack and pushes the pointer/length onto
233 /// the stack. If `realloc` is set to `Some` then this is expected to
234 /// *consume* the list which means that the data needs to be copied. An
235 /// allocation/copy is expected when:
236 ///
237 /// * A host is calling a wasm export with a list (it needs to copy the
238 /// list in to the callee's module, allocating space with `realloc`)
239 /// * A wasm export is returning a list (it's expected to use `realloc`
240 /// to give ownership of the list to the caller.
241 /// * A host is returning a list in a import definition, meaning that
242 /// space needs to be allocated in the caller with `realloc`).
243 ///
244 /// A copy does not happen (e.g. `realloc` is `None`) when:
245 ///
246 /// * A wasm module calls an import with the list. In this situation
247 /// it's expected the caller will know how to access this module's
248 /// memory (e.g. the host has raw access or wasm-to-wasm communication
249 /// would copy the list).
250 ///
251 /// If `realloc` is `Some` then the adapter is not responsible for
252 /// cleaning up this list because the other end is receiving the
253 /// allocation. If `realloc` is `None` then the adapter is responsible
254 /// for cleaning up any temporary allocation it created, if any.
255 ListCanonLower {
256 element: &'a Type,
257 realloc: Option<&'a str>,
258 } : [1] => [2],
259
260 /// Same as `ListCanonLower`, but used for strings
261 StringLower {
262 realloc: Option<&'a str>,
263 } : [1] => [2],
264
265 /// Lowers a list where the element's layout in the native language is
266 /// not expected to match the canonical ABI definition of interface
267 /// types.
268 ///
269 /// Pops a list value from the stack and pushes the pointer/length onto
270 /// the stack. This operation also pops a block from the block stack
271 /// which is used as the iteration body of writing each element of the
272 /// list consumed.
273 ///
274 /// The `realloc` field here behaves the same way as `ListCanonLower`.
275 /// It's only set to `None` when a wasm module calls a declared import.
276 /// Otherwise lowering in other contexts requires allocating memory for
277 /// the receiver to own.
278 ListLower {
279 element: &'a Type,
280 realloc: Option<&'a str>,
281 } : [1] => [2],
282
283 /// Lifts a list which has a canonical representation into an interface
284 /// types value.
285 ///
286 /// The term "canonical" representation here means that the
287 /// representation of the interface types value in the native language
288 /// exactly matches the canonical ABI definition of the type.
289 ///
290 /// This will consume two `i32` values from the stack, a pointer and a
291 /// length, and then produces an interface value list.
292 ListCanonLift {
293 element: &'a Type,
294 ty: TypeId,
295 } : [2] => [1],
296
297 /// Same as `ListCanonLift`, but used for strings
298 StringLift : [2] => [1],
299
300 /// Lifts a list which into an interface types value.
301 ///
302 /// This will consume two `i32` values from the stack, a pointer and a
303 /// length, and then produces an interface value list.
304 ///
305 /// This will also pop a block from the block stack which is how to
306 /// read each individual element from the list.
307 ListLift {
308 element: &'a Type,
309 ty: TypeId,
310 } : [2] => [1],
311
312 /// Pushes an operand onto the stack representing the list item from
313 /// each iteration of the list.
314 ///
315 /// This is only used inside of blocks related to lowering lists.
316 IterElem { element: &'a Type } : [0] => [1],
317
318 /// Pushes an operand onto the stack representing the base pointer of
319 /// the next element in a list.
320 ///
321 /// This is used for both lifting and lowering lists.
322 IterBasePointer : [0] => [1],
323
324 // records and tuples
325
326 /// Pops a record value off the stack, decomposes the record to all of
327 /// its fields, and then pushes the fields onto the stack.
328 RecordLower {
329 record: &'a Record,
330 name: &'a str,
331 ty: TypeId,
332 } : [1] => [record.fields.len()],
333
334 /// Pops all fields for a record off the stack and then composes them
335 /// into a record.
336 RecordLift {
337 record: &'a Record,
338 name: &'a str,
339 ty: TypeId,
340 } : [record.fields.len()] => [1],
341
342 /// Create an `i32` from a handle.
343 HandleLower {
344 handle: &'a Handle,
345 name: &'a str,
346 ty: TypeId,
347 } : [1] => [1],
348
349 /// Create a handle from an `i32`.
350 HandleLift {
351 handle: &'a Handle,
352 name: &'a str,
353 ty: TypeId,
354 } : [1] => [1],
355
356 /// Create an `i32` from a future.
357 FutureLower {
358 payload: &'a Option<Type>,
359 ty: TypeId,
360 } : [1] => [1],
361
362 /// Create a future from an `i32`.
363 FutureLift {
364 payload: &'a Option<Type>,
365 ty: TypeId,
366 } : [1] => [1],
367
368 /// Create an `i32` from a stream.
369 StreamLower {
370 payload: &'a Option<Type>,
371 ty: TypeId,
372 } : [1] => [1],
373
374 /// Create a stream from an `i32`.
375 StreamLift {
376 payload: &'a Option<Type>,
377 ty: TypeId,
378 } : [1] => [1],
379
380 /// Create an `i32` from an error-context.
381 ErrorContextLower : [1] => [1],
382
383 /// Create a error-context from an `i32`.
384 ErrorContextLift : [1] => [1],
385
386 /// Pops a tuple value off the stack, decomposes the tuple to all of
387 /// its fields, and then pushes the fields onto the stack.
388 TupleLower {
389 tuple: &'a Tuple,
390 ty: TypeId,
391 } : [1] => [tuple.types.len()],
392
393 /// Pops all fields for a tuple off the stack and then composes them
394 /// into a tuple.
395 TupleLift {
396 tuple: &'a Tuple,
397 ty: TypeId,
398 } : [tuple.types.len()] => [1],
399
400 /// Converts a language-specific record-of-bools to a list of `i32`.
401 FlagsLower {
402 flags: &'a Flags,
403 name: &'a str,
404 ty: TypeId,
405 } : [1] => [flags.repr().count()],
406 /// Converts a list of native wasm `i32` to a language-specific
407 /// record-of-bools.
408 FlagsLift {
409 flags: &'a Flags,
410 name: &'a str,
411 ty: TypeId,
412 } : [flags.repr().count()] => [1],
413
414 // variants
415
416 /// This is a special instruction used for `VariantLower`
417 /// instruction to determine the name of the payload, if present, to use
418 /// within each block.
419 ///
420 /// Each sub-block will have this be the first instruction, and if it
421 /// lowers a payload it will expect something bound to this name.
422 VariantPayloadName : [0] => [1],
423
424 /// Pops a variant off the stack as well as `ty.cases.len()` blocks
425 /// from the code generator. Uses each of those blocks and the value
426 /// from the stack to produce `nresults` of items.
427 VariantLower {
428 variant: &'a Variant,
429 name: &'a str,
430 ty: TypeId,
431 results: &'a [WasmType],
432 } : [1] => [results.len()],
433
434 /// Pops an `i32` off the stack as well as `ty.cases.len()` blocks
435 /// from the code generator. Uses each of those blocks and the value
436 /// from the stack to produce a final variant.
437 VariantLift {
438 variant: &'a Variant,
439 name: &'a str,
440 ty: TypeId,
441 } : [1] => [1],
442
443 /// Pops an enum off the stack and pushes the `i32` representation.
444 EnumLower {
445 enum_: &'a Enum,
446 name: &'a str,
447 ty: TypeId,
448 } : [1] => [1],
449
450 /// Pops an `i32` off the stack and lifts it into the `enum` specified.
451 EnumLift {
452 enum_: &'a Enum,
453 name: &'a str,
454 ty: TypeId,
455 } : [1] => [1],
456
457 /// Specialization of `VariantLower` for specifically `option<T>` types,
458 /// otherwise behaves the same as `VariantLower` (e.g. two blocks for
459 /// the two cases.
460 OptionLower {
461 payload: &'a Type,
462 ty: TypeId,
463 results: &'a [WasmType],
464 } : [1] => [results.len()],
465
466 /// Specialization of `VariantLift` for specifically the `option<T>`
467 /// type. Otherwise behaves the same as the `VariantLift` instruction
468 /// with two blocks for the lift.
469 OptionLift {
470 payload: &'a Type,
471 ty: TypeId,
472 } : [1] => [1],
473
474 /// Specialization of `VariantLower` for specifically `result<T, E>`
475 /// types, otherwise behaves the same as `VariantLower` (e.g. two blocks
476 /// for the two cases.
477 ResultLower {
478 result: &'a Result_
479 ty: TypeId,
480 results: &'a [WasmType],
481 } : [1] => [results.len()],
482
483 /// Specialization of `VariantLift` for specifically the `result<T,
484 /// E>` type. Otherwise behaves the same as the `VariantLift`
485 /// instruction with two blocks for the lift.
486 ResultLift {
487 result: &'a Result_,
488 ty: TypeId,
489 } : [1] => [1],
490
491 // calling/control flow
492
493 /// Represents a call to a raw WebAssembly API. The module/name are
494 /// provided inline as well as the types if necessary.
495 CallWasm {
496 name: &'a str,
497 sig: &'a WasmSignature,
498 } : [sig.params.len()] => [sig.results.len()],
499
500 /// Same as `CallWasm`, except the dual where an interface is being
501 /// called rather than a raw wasm function.
502 ///
503 /// Note that this will be used for async functions, and `async_`
504 /// indicates whether the function should be invoked in an async
505 /// fashion.
506 CallInterface {
507 func: &'a Function,
508 async_: bool,
509 } : [func.params.len()] => [usize::from(func.result.is_some())],
510
511 /// Returns `amt` values on the stack. This is always the last
512 /// instruction.
513 Return { amt: usize, func: &'a Function } : [*amt] => [0],
514
515 /// Calls the `realloc` function specified in a malloc-like fashion
516 /// allocating `size` bytes with alignment `align`.
517 ///
518 /// Pushes the returned pointer onto the stack.
519 Malloc {
520 realloc: &'static str,
521 size: ArchitectureSize,
522 align: Alignment,
523 } : [0] => [1],
524
525 /// Used exclusively for guest-code generation this indicates that
526 /// the standard memory deallocation function needs to be invoked with
527 /// the specified parameters.
528 ///
529 /// This will pop a pointer from the stack and push nothing.
530 GuestDeallocate {
531 size: ArchitectureSize,
532 align: Alignment,
533 } : [1] => [0],
534
535 /// Used exclusively for guest-code generation this indicates that
536 /// a string is being deallocated. The ptr/length are on the stack and
537 /// are poppped off and used to deallocate the string.
538 GuestDeallocateString : [2] => [0],
539
540 /// Used exclusively for guest-code generation this indicates that
541 /// a list is being deallocated. The ptr/length are on the stack and
542 /// are poppped off and used to deallocate the list.
543 ///
544 /// This variant also pops a block off the block stack to be used as the
545 /// body of the deallocation loop.
546 GuestDeallocateList {
547 element: &'a Type,
548 } : [2] => [0],
549
550 /// Used exclusively for guest-code generation this indicates that
551 /// a variant is being deallocated. The integer discriminant is popped
552 /// off the stack as well as `blocks` number of blocks popped from the
553 /// blocks stack. The variant is used to select, at runtime, which of
554 /// the blocks is executed to deallocate the variant.
555 GuestDeallocateVariant {
556 blocks: usize,
557 } : [1] => [0],
558
559 /// Deallocates the language-specific handle representation on the top
560 /// of the stack. Used for async imports.
561 DropHandle { ty: &'a Type } : [1] => [0],
562
563 /// Call `task.return` for an async-lifted export.
564 ///
565 /// This will call core wasm import `name` which will be mapped to
566 /// `task.return` later on. The function given has `params` as its
567 /// parameters and it will return no results. This is used to pass the
568 /// lowered representation of a function's results to `task.return`.
569 AsyncTaskReturn { name: &'a str, params: &'a [WasmType] } : [params.len()] => [0],
570
571 /// Force the evaluation of the specified number of expressions and push
572 /// the results to the stack.
573 ///
574 /// This is useful prior to disposing of temporary variables and/or
575 /// allocations which are referenced by one or more not-yet-evaluated
576 /// expressions.
577 Flush { amt: usize } : [*amt] => [*amt],
578 }
579}
580
581#[derive(Debug, PartialEq)]
582pub enum Bitcast {
583 // Upcasts
584 F32ToI32,
585 F64ToI64,
586 I32ToI64,
587 F32ToI64,
588
589 // Downcasts
590 I32ToF32,
591 I64ToF64,
592 I64ToI32,
593 I64ToF32,
594
595 // PointerOrI64 conversions. These preserve provenance when the source
596 // or destination is a pointer value.
597 //
598 // These are used when pointer values are being stored in
599 // (ToP64) and loaded out of (P64To) PointerOrI64 values, so they
600 // always have to preserve provenance when the value being loaded or
601 // stored is a pointer.
602 P64ToI64,
603 I64ToP64,
604 P64ToP,
605 PToP64,
606
607 // Pointer<->number conversions. These do not preserve provenance.
608 //
609 // These are used when integer or floating-point values are being stored in
610 // (I32ToP/etc.) and loaded out of (PToI32/etc.) pointer values, so they
611 // never have any provenance to preserve.
612 I32ToP,
613 PToI32,
614 PToL,
615 LToP,
616
617 // Number<->Number conversions.
618 I32ToL,
619 LToI32,
620 I64ToL,
621 LToI64,
622
623 // Multiple conversions in sequence.
624 Sequence(Box<[Bitcast; 2]>),
625
626 None,
627}
628
629/// Whether the glue code surrounding a call is lifting arguments and lowering
630/// results or vice versa.
631#[derive(Clone, Copy, PartialEq, Eq)]
632pub enum LiftLower {
633 /// When the glue code lifts arguments and lowers results.
634 ///
635 /// ```text
636 /// Wasm --lift-args--> SourceLanguage; call; SourceLanguage --lower-results--> Wasm
637 /// ```
638 LiftArgsLowerResults,
639 /// When the glue code lowers arguments and lifts results.
640 ///
641 /// ```text
642 /// SourceLanguage --lower-args--> Wasm; call; Wasm --lift-results--> SourceLanguage
643 /// ```
644 LowerArgsLiftResults,
645}
646
647/// Trait for language implementors to use to generate glue code between native
648/// WebAssembly signatures and interface types signatures.
649///
650/// This is used as an implementation detail in interpreting the ABI between
651/// interface types and wasm types. Eventually this will be driven by interface
652/// types adapters themselves, but for now the ABI of a function dictates what
653/// instructions are fed in.
654///
655/// Types implementing `Bindgen` are incrementally fed `Instruction` values to
656/// generate code for. Instructions operate like a stack machine where each
657/// instruction has a list of inputs and a list of outputs (provided by the
658/// `emit` function).
659pub trait Bindgen {
660 /// The intermediate type for fragments of code for this type.
661 ///
662 /// For most languages `String` is a suitable intermediate type.
663 type Operand: Clone + fmt::Debug;
664
665 /// Emit code to implement the given instruction.
666 ///
667 /// Each operand is given in `operands` and can be popped off if ownership
668 /// is required. It's guaranteed that `operands` has the appropriate length
669 /// for the `inst` given, as specified with [`Instruction`].
670 ///
671 /// Each result variable should be pushed onto `results`. This function must
672 /// push the appropriate number of results or binding generation will panic.
673 fn emit(
674 &mut self,
675 resolve: &Resolve,
676 inst: &Instruction<'_>,
677 operands: &mut Vec<Self::Operand>,
678 results: &mut Vec<Self::Operand>,
679 );
680
681 /// Gets a operand reference to the return pointer area.
682 ///
683 /// The provided size and alignment is for the function's return type.
684 fn return_pointer(&mut self, size: ArchitectureSize, align: Alignment) -> Self::Operand;
685
686 /// Enters a new block of code to generate code for.
687 ///
688 /// This is currently exclusively used for constructing variants. When a
689 /// variant is constructed a block here will be pushed for each case of a
690 /// variant, generating the code necessary to translate a variant case.
691 ///
692 /// Blocks are completed with `finish_block` below. It's expected that `emit`
693 /// will always push code (if necessary) into the "current block", which is
694 /// updated by calling this method and `finish_block` below.
695 fn push_block(&mut self);
696
697 /// Indicates to the code generator that a block is completed, and the
698 /// `operand` specified was the resulting value of the block.
699 ///
700 /// This method will be used to compute the value of each arm of lifting a
701 /// variant. The `operand` will be `None` if the variant case didn't
702 /// actually have any type associated with it. Otherwise it will be `Some`
703 /// as the last value remaining on the stack representing the value
704 /// associated with a variant's `case`.
705 ///
706 /// It's expected that this will resume code generation in the previous
707 /// block before `push_block` was called. This must also save the results
708 /// of the current block internally for instructions like `ResultLift` to
709 /// use later.
710 fn finish_block(&mut self, operand: &mut Vec<Self::Operand>);
711
712 /// Returns size information that was previously calculated for all types.
713 fn sizes(&self) -> &SizeAlign;
714
715 /// Returns whether or not the specified element type is represented in a
716 /// "canonical" form for lists. This dictates whether the `ListCanonLower`
717 /// and `ListCanonLift` instructions are used or not.
718 fn is_list_canonical(&self, resolve: &Resolve, element: &Type) -> bool;
719}
720
721/// Generates an abstract sequence of instructions which represents this
722/// function being adapted as an imported function.
723///
724/// The instructions here, when executed, will emulate a language with
725/// interface types calling the concrete wasm implementation. The parameters
726/// for the returned instruction sequence are the language's own
727/// interface-types parameters. One instruction in the instruction stream
728/// will be a `Call` which represents calling the actual raw wasm function
729/// signature.
730///
731/// This function is useful, for example, if you're building a language
732/// generator for WASI bindings. This will document how to translate
733/// language-specific values into the wasm types to call a WASI function,
734/// and it will also automatically convert the results of the WASI function
735/// back to a language-specific value.
736pub fn call(
737 resolve: &Resolve,
738 variant: AbiVariant,
739 lift_lower: LiftLower,
740 func: &Function,
741 bindgen: &mut impl Bindgen,
742 async_: bool,
743) {
744 Generator::new(resolve, bindgen).call(func, variant, lift_lower, async_);
745}
746
747pub fn lower_to_memory<B: Bindgen>(
748 resolve: &Resolve,
749 bindgen: &mut B,
750 address: B::Operand,
751 value: B::Operand,
752 ty: &Type,
753) {
754 let mut generator = Generator::new(resolve, bindgen);
755 // TODO: make this configurable? Right now this function is only called for
756 // future/stream callbacks so it's appropriate to skip realloc here as it's
757 // all "lower for wasm import", but this might get reused for something else
758 // in the future.
759 generator.realloc = Some(Realloc::Export("cabi_realloc"));
760 generator.stack.push(value);
761 generator.write_to_memory(ty, address, Default::default());
762}
763
764pub fn lower_flat<B: Bindgen>(
765 resolve: &Resolve,
766 bindgen: &mut B,
767 value: B::Operand,
768 ty: &Type,
769) -> Vec<B::Operand> {
770 let mut generator = Generator::new(resolve, bindgen);
771 generator.stack.push(value);
772 generator.realloc = Some(Realloc::Export("cabi_realloc"));
773 generator.lower(ty);
774 generator.stack
775}
776
777pub fn lift_from_memory<B: Bindgen>(
778 resolve: &Resolve,
779 bindgen: &mut B,
780 address: B::Operand,
781 ty: &Type,
782) -> B::Operand {
783 let mut generator = Generator::new(resolve, bindgen);
784 generator.read_from_memory(ty, address, Default::default());
785 generator.stack.pop().unwrap()
786}
787
788/// Used in a similar manner as the `Interface::call` function except is
789/// used to generate the `post-return` callback for `func`.
790///
791/// This is only intended to be used in guest generators for exported
792/// functions and will primarily generate `GuestDeallocate*` instructions,
793/// plus others used as input to those instructions.
794pub fn post_return(resolve: &Resolve, func: &Function, bindgen: &mut impl Bindgen) {
795 Generator::new(resolve, bindgen).post_return(func);
796}
797
798/// Returns whether the `Function` specified needs a post-return function to
799/// be generated in guest code.
800///
801/// This is used when the return value contains a memory allocation such as
802/// a list or a string primarily.
803pub fn guest_export_needs_post_return(resolve: &Resolve, func: &Function) -> bool {
804 func.result
805 .map(|t| needs_deallocate(resolve, &t, Deallocate::Lists))
806 .unwrap_or(false)
807}
808
809fn needs_deallocate(resolve: &Resolve, ty: &Type, what: Deallocate) -> bool {
810 match ty {
811 Type::String => true,
812 Type::ErrorContext => true,
813 Type::Id(id) => match &resolve.types[*id].kind {
814 TypeDefKind::List(_) => true,
815 TypeDefKind::Type(t) => needs_deallocate(resolve, t, what),
816 TypeDefKind::Handle(Handle::Own(_)) => what.handles(),
817 TypeDefKind::Handle(Handle::Borrow(_)) => false,
818 TypeDefKind::Resource => false,
819 TypeDefKind::Record(r) => r
820 .fields
821 .iter()
822 .any(|f| needs_deallocate(resolve, &f.ty, what)),
823 TypeDefKind::Tuple(t) => t.types.iter().any(|t| needs_deallocate(resolve, t, what)),
824 TypeDefKind::Variant(t) => t
825 .cases
826 .iter()
827 .filter_map(|t| t.ty.as_ref())
828 .any(|t| needs_deallocate(resolve, t, what)),
829 TypeDefKind::Option(t) => needs_deallocate(resolve, t, what),
830 TypeDefKind::Result(t) => [&t.ok, &t.err]
831 .iter()
832 .filter_map(|t| t.as_ref())
833 .any(|t| needs_deallocate(resolve, t, what)),
834 TypeDefKind::Flags(_) | TypeDefKind::Enum(_) => false,
835 TypeDefKind::Future(_) | TypeDefKind::Stream(_) => what.handles(),
836 TypeDefKind::Unknown => unreachable!(),
837 TypeDefKind::FixedSizeList(..) => todo!(),
838 },
839
840 Type::Bool
841 | Type::U8
842 | Type::S8
843 | Type::U16
844 | Type::S16
845 | Type::U32
846 | Type::S32
847 | Type::U64
848 | Type::S64
849 | Type::F32
850 | Type::F64
851 | Type::Char => false,
852 }
853}
854
855/// Generate instructions in `bindgen` to deallocate all lists in `ptr` where
856/// that's a pointer to a sequence of `types` stored in linear memory.
857pub fn deallocate_lists_in_types<B: Bindgen>(
858 resolve: &Resolve,
859 types: &[Type],
860 operands: &[B::Operand],
861 indirect: bool,
862 bindgen: &mut B,
863) {
864 Generator::new(resolve, bindgen).deallocate_in_types(
865 types,
866 operands,
867 indirect,
868 Deallocate::Lists,
869 );
870}
871
872/// Generate instructions in `bindgen` to deallocate all lists in `ptr` where
873/// that's a pointer to a sequence of `types` stored in linear memory.
874pub fn deallocate_lists_and_own_in_types<B: Bindgen>(
875 resolve: &Resolve,
876 types: &[Type],
877 operands: &[B::Operand],
878 indirect: bool,
879 bindgen: &mut B,
880) {
881 Generator::new(resolve, bindgen).deallocate_in_types(
882 types,
883 operands,
884 indirect,
885 Deallocate::ListsAndOwn,
886 );
887}
888
889#[derive(Copy, Clone)]
890pub enum Realloc {
891 None,
892 Export(&'static str),
893}
894
895/// What to deallocate in various `deallocate_*` methods.
896#[derive(Copy, Clone)]
897enum Deallocate {
898 /// Only deallocate lists.
899 Lists,
900 /// Deallocate lists and owned resources such as `own<T>` and
901 /// futures/streams.
902 ListsAndOwn,
903}
904
905impl Deallocate {
906 fn handles(&self) -> bool {
907 match self {
908 Deallocate::Lists => false,
909 Deallocate::ListsAndOwn => true,
910 }
911 }
912}
913
914struct Generator<'a, B: Bindgen> {
915 bindgen: &'a mut B,
916 resolve: &'a Resolve,
917 operands: Vec<B::Operand>,
918 results: Vec<B::Operand>,
919 stack: Vec<B::Operand>,
920 return_pointer: Option<B::Operand>,
921 realloc: Option<Realloc>,
922}
923
924const MAX_FLAT_PARAMS: usize = 16;
925const MAX_FLAT_ASYNC_PARAMS: usize = 4;
926
927impl<'a, B: Bindgen> Generator<'a, B> {
928 fn new(resolve: &'a Resolve, bindgen: &'a mut B) -> Generator<'a, B> {
929 Generator {
930 resolve,
931 bindgen,
932 operands: Vec::new(),
933 results: Vec::new(),
934 stack: Vec::new(),
935 return_pointer: None,
936 realloc: None,
937 }
938 }
939
940 fn call(&mut self, func: &Function, variant: AbiVariant, lift_lower: LiftLower, async_: bool) {
941 let sig = self.resolve.wasm_signature(variant, func);
942
943 // Lowering parameters calling a wasm import _or_ returning a result
944 // from an async-lifted wasm export means we don't need to pass
945 // ownership, but we pass ownership in all other cases.
946 let realloc = match (variant, lift_lower, async_) {
947 (AbiVariant::GuestImport, LiftLower::LowerArgsLiftResults, _)
948 | (
949 AbiVariant::GuestExport
950 | AbiVariant::GuestExportAsync
951 | AbiVariant::GuestExportAsyncStackful,
952 LiftLower::LiftArgsLowerResults,
953 true,
954 ) => Realloc::None,
955 _ => Realloc::Export("cabi_realloc"),
956 };
957 assert!(self.realloc.is_none());
958
959 match lift_lower {
960 LiftLower::LowerArgsLiftResults => {
961 self.realloc = Some(realloc);
962
963 // Create a function that performs individual lowering of operands
964 let lower_to_memory = |self_: &mut Self, ptr: B::Operand| {
965 let mut offset = ArchitectureSize::default();
966 for (nth, (_, ty)) in func.params.iter().enumerate() {
967 self_.emit(&Instruction::GetArg { nth });
968 offset = align_to_arch(offset, self_.bindgen.sizes().align(ty));
969 self_.write_to_memory(ty, ptr.clone(), offset);
970 offset += self_.bindgen.sizes().size(ty);
971 }
972
973 self_.stack.push(ptr);
974 };
975
976 // Lower parameters
977 if sig.indirect_params {
978 // If parameters are indirect space is
979 // allocated for them and each argument is lowered
980 // individually into memory.
981 let ElementInfo { size, align } = self
982 .bindgen
983 .sizes()
984 .record(func.params.iter().map(|t| &t.1));
985
986 // Resolve the pointer to the indirectly stored parameters
987 let ptr = match variant {
988 // When a wasm module calls an import it will provide
989 // space that isn't explicitly deallocated.
990 AbiVariant::GuestImport => self.bindgen.return_pointer(size, align),
991
992 AbiVariant::GuestImportAsync => {
993 todo!("direct param lowering for async guest import not implemented")
994 }
995
996 // When calling a wasm module from the outside, though,
997 // malloc needs to be called.
998 AbiVariant::GuestExport => {
999 self.emit(&Instruction::Malloc {
1000 realloc: "cabi_realloc",
1001 size,
1002 align,
1003 });
1004 self.stack.pop().unwrap()
1005 }
1006
1007 AbiVariant::GuestExportAsync | AbiVariant::GuestExportAsyncStackful => {
1008 todo!("direct param lowering for async not implemented")
1009 }
1010 };
1011
1012 // Lower the parameters to memory
1013 lower_to_memory(self, ptr);
1014 } else {
1015 // ... otherwise arguments are direct,
1016 // (there aren't too many) then we simply do a normal lower
1017 // operation for them all.
1018 for (nth, (_, ty)) in func.params.iter().enumerate() {
1019 self.emit(&Instruction::GetArg { nth });
1020 self.lower(ty);
1021 }
1022 }
1023 self.realloc = None;
1024
1025 // If necessary we may need to prepare a return pointer for this ABI.
1026 if variant == AbiVariant::GuestImport && sig.retptr {
1027 let info = self.bindgen.sizes().params(&func.result);
1028 let ptr = self.bindgen.return_pointer(info.size, info.align);
1029 self.return_pointer = Some(ptr.clone());
1030 self.stack.push(ptr);
1031 }
1032
1033 // Call the Wasm function
1034 assert_eq!(self.stack.len(), sig.params.len());
1035 self.emit(&Instruction::CallWasm {
1036 name: &func.name,
1037 sig: &sig,
1038 });
1039
1040 // Handle the result
1041 if sig.retptr {
1042 // If there is a return pointer, we must get the pointer to where results
1043 // should be stored, and store the results there?
1044
1045 let ptr = match variant {
1046 // imports into guests means it's a wasm module
1047 // calling an imported function. We supplied the
1048 // return pointer as the last argument (saved in
1049 // `self.return_pointer`) so we use that to read
1050 // the result of the function from memory.
1051 AbiVariant::GuestImport => {
1052 assert!(sig.results.is_empty());
1053 self.return_pointer.take().unwrap()
1054 }
1055
1056 // guest exports means that this is a host
1057 // calling wasm so wasm returned a pointer to where
1058 // the result is stored
1059 AbiVariant::GuestExport => self.stack.pop().unwrap(),
1060
1061 AbiVariant::GuestImportAsync
1062 | AbiVariant::GuestExportAsync
1063 | AbiVariant::GuestExportAsyncStackful => {
1064 unreachable!()
1065 }
1066 };
1067
1068 if let (AbiVariant::GuestExport, true) = (variant, async_) {
1069 // If we're dealing with an async function, the result should not be read from memory
1070 // immediately, as it's the async call result
1071 //
1072 // We can leave the result of the call (the indication of what to do as an async call)
1073 // on the stack as a return
1074 self.stack.push(ptr);
1075 } else {
1076 // If we're not dealing with an async call, the result must be in memory at this point and can be read out
1077 self.read_results_from_memory(
1078 &func.result,
1079 ptr.clone(),
1080 ArchitectureSize::default(),
1081 );
1082 self.emit(&Instruction::Flush {
1083 amt: usize::from(func.result.is_some()),
1084 });
1085 }
1086 } else {
1087 // With no return pointer in use we can simply lift the
1088 // result(s) of the function from the result of the core
1089 // wasm function.
1090 if let Some(ty) = &func.result {
1091 self.lift(ty)
1092 }
1093 }
1094
1095 // Emit the function return
1096 self.emit(&Instruction::Return {
1097 func,
1098 amt: usize::from(func.result.is_some()),
1099 });
1100 }
1101
1102 LiftLower::LiftArgsLowerResults => {
1103 let max_flat_params = match (variant, async_) {
1104 (AbiVariant::GuestImportAsync, _is_async @ true) => MAX_FLAT_ASYNC_PARAMS,
1105 _ => MAX_FLAT_PARAMS,
1106 };
1107
1108 // Read parameters from memory
1109 let read_from_memory = |self_: &mut Self| {
1110 let mut offset = ArchitectureSize::default();
1111 let ptr = self_
1112 .stack
1113 .pop()
1114 .expect("empty stack during read param from memory");
1115 for (_, ty) in func.params.iter() {
1116 offset = align_to_arch(offset, self_.bindgen.sizes().align(ty));
1117 self_.read_from_memory(ty, ptr.clone(), offset);
1118 offset += self_.bindgen.sizes().size(ty);
1119 }
1120 };
1121
1122 // Resolve parameters
1123 if sig.indirect_params {
1124 // If parameters were passed indirectly, arguments must be
1125 // read in succession from memory, with the pointer to the arguments
1126 // being the first argument to the function.
1127 self.emit(&Instruction::GetArg { nth: 0 });
1128 read_from_memory(self);
1129 } else {
1130 // ... otherwise, if parameters were passed directly then we lift each
1131 // argument in succession from the component wasm types that
1132 // make-up the type.
1133 let mut offset = 0;
1134 for (param_name, ty) in func.params.iter() {
1135 let Some(types) = flat_types(self.resolve, ty, Some(max_flat_params))
1136 else {
1137 panic!("failed to flatten types during direct parameter lifting ('{param_name}' in func '{}')", func.name);
1138 };
1139 for _ in 0..types.len() {
1140 self.emit(&Instruction::GetArg { nth: offset });
1141 offset += 1;
1142 }
1143 self.lift(ty);
1144 }
1145 }
1146
1147 // ... and that allows us to call the interface types function
1148 self.emit(&Instruction::CallInterface { func, async_ });
1149
1150 // The return value of an async function is *not* the result of the function
1151 // itself or a pointer but rather a status code.
1152 //
1153 // Asynchronous functions will call `task.return` after the
1154 // interface function completes, so lowering is conditional
1155 // based on slightly different logic for the `task.return`
1156 // intrinsic.
1157 //
1158 // Note that in the async import case teh code below deals with the CM function being lowered,
1159 // not the core function that is underneath that (i.e. func.result may be empty,
1160 // where the associated core function underneath must have a i32 status code result)
1161 let (lower_to_memory, async_flat_results) = match (async_, &func.result) {
1162 // All async cases pass along the function results and flatten where necesary
1163 (_is_async @ true, func_result) => {
1164 let results = match &func_result {
1165 Some(ty) => flat_types(self.resolve, ty, Some(max_flat_params)),
1166 None => Some(Vec::new()),
1167 };
1168 (results.is_none(), Some(results))
1169 }
1170 // All other non-async cases
1171 (_is_async @ false, _) => (sig.retptr, None),
1172 };
1173
1174 // This was dynamically allocated by the caller (or async start
1175 // function) so after it's been read by the guest we need to
1176 // deallocate it.
1177 if let AbiVariant::GuestExport
1178 | AbiVariant::GuestExportAsync
1179 | AbiVariant::GuestExportAsyncStackful = variant
1180 {
1181 if sig.indirect_params && !async_ {
1182 let ElementInfo { size, align } = self
1183 .bindgen
1184 .sizes()
1185 .record(func.params.iter().map(|t| &t.1));
1186 self.emit(&Instruction::GetArg { nth: 0 });
1187 self.emit(&Instruction::GuestDeallocate { size, align });
1188 }
1189 }
1190
1191 self.realloc = Some(realloc);
1192
1193 // Perform memory lowing of relevant results, including out pointers as well as traditional results
1194 match (lower_to_memory, sig.retptr, variant) {
1195 // For sync calls, if no lowering to memory is required and there *is* a return pointer in use
1196 // then we need to lower then simply lower the result(s) and return that directly from the function.
1197 (_lower_to_memory @ false, _, _) => {
1198 if let Some(ty) = &func.result {
1199 self.lower(ty);
1200 }
1201 }
1202
1203 // Lowering to memory for a guest import
1204 //
1205 // When a function is imported to a guest this means
1206 // it's a host providing the implementation of the
1207 // import. The result is stored in the pointer
1208 // specified in the last argument, so we get the
1209 // pointer here and then write the return value into
1210 // it.
1211 (
1212 _lower_to_memory @ true,
1213 _has_ret_ptr @ true,
1214 AbiVariant::GuestImport | AbiVariant::GuestImportAsync,
1215 ) => {
1216 self.emit(&Instruction::GetArg {
1217 nth: sig.params.len() - 1,
1218 });
1219 let ptr = self
1220 .stack
1221 .pop()
1222 .expect("empty stack during result lower to memory");
1223 self.write_params_to_memory(&func.result, ptr, Default::default());
1224 }
1225
1226 // Lowering to memory for a guest export
1227 //
1228 // For a guest import this is a function defined in
1229 // wasm, so we're returning a pointer where the
1230 // value was stored at. Allocate some space here
1231 // (statically) and then write the result into that
1232 // memory, returning the pointer at the end.
1233 (_lower_to_memory @ true, _, variant) => match variant {
1234 AbiVariant::GuestExport | AbiVariant::GuestExportAsync => {
1235 let ElementInfo { size, align } =
1236 self.bindgen.sizes().params(&func.result);
1237 let ptr = self.bindgen.return_pointer(size, align);
1238 self.write_params_to_memory(
1239 &func.result,
1240 ptr.clone(),
1241 Default::default(),
1242 );
1243 self.stack.push(ptr);
1244 }
1245 AbiVariant::GuestImport | AbiVariant::GuestImportAsync => {
1246 unreachable!(
1247 "lowering to memory cannot be performed without a return pointer ({async_note} func [{func_name}], variant {variant:#?})",
1248 async_note = async_.then_some("async").unwrap_or("sync"),
1249 func_name = func.name,
1250 )
1251 }
1252 AbiVariant::GuestExportAsyncStackful => {
1253 todo!("stackful exports are not yet supported")
1254 }
1255 },
1256 }
1257
1258 // Build and emit the appropriate return
1259 match (variant, async_flat_results) {
1260 // Async guest imports always return a i32 status code
1261 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, None) if async_ => {
1262 unreachable!("async guest imports must have a return")
1263 }
1264
1265 // Async guest imports with results return the status code, not a pointer to any results
1266 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, Some(results))
1267 if async_ =>
1268 {
1269 let name = &format!("[task-return]{}", func.name);
1270 let params = results.as_deref().unwrap_or_default();
1271 self.emit(&Instruction::AsyncTaskReturn { name, params });
1272 }
1273
1274 // All async/non-async cases with results that need to be returned
1275 //
1276 // In practice, async imports should not end up here, as the returned result of an
1277 // async import is *not* a pointer but instead a status code.
1278 (_, Some(results)) => {
1279 let name = &format!("[task-return]{}", func.name);
1280 let params = results.as_deref().unwrap_or(&[WasmType::Pointer]);
1281 self.emit(&Instruction::AsyncTaskReturn { name, params });
1282 }
1283
1284 // All async/non-async cases with no results
1285 (_, None) => {
1286 if async_ {
1287 let name = &format!("[task-return]{}", func.name);
1288 self.emit(&Instruction::AsyncTaskReturn {
1289 name: name,
1290 params: if sig.results.len() > MAX_FLAT_ASYNC_PARAMS {
1291 &[WasmType::Pointer]
1292 } else {
1293 &sig.results
1294 },
1295 });
1296 } else {
1297 self.emit(&Instruction::Return {
1298 func,
1299 amt: sig.results.len(),
1300 });
1301 }
1302 }
1303 }
1304
1305 self.realloc = None;
1306 }
1307 }
1308
1309 assert!(self.realloc.is_none());
1310
1311 assert!(
1312 self.stack.is_empty(),
1313 "stack has {} items remaining: {:?}",
1314 self.stack.len(),
1315 self.stack,
1316 );
1317 }
1318
1319 fn post_return(&mut self, func: &Function) {
1320 let sig = self.resolve.wasm_signature(AbiVariant::GuestExport, func);
1321
1322 // Currently post-return is only used for lists and lists are always
1323 // returned indirectly through memory due to their flat representation
1324 // having more than one type. Assert that a return pointer is used,
1325 // though, in case this ever changes.
1326 assert!(sig.retptr);
1327
1328 self.emit(&Instruction::GetArg { nth: 0 });
1329 let addr = self.stack.pop().unwrap();
1330
1331 let mut types = Vec::new();
1332 types.extend(func.result);
1333 self.deallocate_in_types(&types, &[addr], true, Deallocate::Lists);
1334
1335 self.emit(&Instruction::Return { func, amt: 0 });
1336 }
1337
1338 fn deallocate_in_types(
1339 &mut self,
1340 types: &[Type],
1341 operands: &[B::Operand],
1342 indirect: bool,
1343 what: Deallocate,
1344 ) {
1345 if indirect {
1346 assert_eq!(operands.len(), 1);
1347 for (offset, ty) in self.bindgen.sizes().field_offsets(types) {
1348 self.deallocate_indirect(ty, operands[0].clone(), offset, what);
1349 }
1350 assert!(
1351 self.stack.is_empty(),
1352 "stack has {} items remaining",
1353 self.stack.len()
1354 );
1355 } else {
1356 let mut operands = operands;
1357 let mut operands_for_ty;
1358 for ty in types {
1359 let types = flat_types(self.resolve, ty, None).unwrap();
1360 (operands_for_ty, operands) = operands.split_at(types.len());
1361 self.stack.extend_from_slice(operands_for_ty);
1362 self.deallocate(ty, what);
1363 assert!(
1364 self.stack.is_empty(),
1365 "stack has {} items remaining",
1366 self.stack.len()
1367 );
1368 }
1369 assert!(operands.is_empty());
1370 }
1371 }
1372
1373 fn emit(&mut self, inst: &Instruction<'_>) {
1374 self.operands.clear();
1375 self.results.clear();
1376
1377 let operands_len = inst.operands_len();
1378 assert!(
1379 self.stack.len() >= operands_len,
1380 "not enough operands on stack for {:?}: have {} need {operands_len}",
1381 inst,
1382 self.stack.len(),
1383 );
1384 self.operands
1385 .extend(self.stack.drain((self.stack.len() - operands_len)..));
1386 self.results.reserve(inst.results_len());
1387
1388 self.bindgen
1389 .emit(self.resolve, inst, &mut self.operands, &mut self.results);
1390
1391 assert_eq!(
1392 self.results.len(),
1393 inst.results_len(),
1394 "{:?} expected {} results, got {}",
1395 inst,
1396 inst.results_len(),
1397 self.results.len()
1398 );
1399 self.stack.append(&mut self.results);
1400 }
1401
1402 fn push_block(&mut self) {
1403 self.bindgen.push_block();
1404 }
1405
1406 fn finish_block(&mut self, size: usize) {
1407 self.operands.clear();
1408 assert!(
1409 size <= self.stack.len(),
1410 "not enough operands on stack for finishing block",
1411 );
1412 self.operands
1413 .extend(self.stack.drain((self.stack.len() - size)..));
1414 self.bindgen.finish_block(&mut self.operands);
1415 }
1416
1417 fn lower(&mut self, ty: &Type) {
1418 use Instruction::*;
1419
1420 match *ty {
1421 Type::Bool => self.emit(&I32FromBool),
1422 Type::S8 => self.emit(&I32FromS8),
1423 Type::U8 => self.emit(&I32FromU8),
1424 Type::S16 => self.emit(&I32FromS16),
1425 Type::U16 => self.emit(&I32FromU16),
1426 Type::S32 => self.emit(&I32FromS32),
1427 Type::U32 => self.emit(&I32FromU32),
1428 Type::S64 => self.emit(&I64FromS64),
1429 Type::U64 => self.emit(&I64FromU64),
1430 Type::Char => self.emit(&I32FromChar),
1431 Type::F32 => self.emit(&CoreF32FromF32),
1432 Type::F64 => self.emit(&CoreF64FromF64),
1433 Type::String => {
1434 let realloc = self.list_realloc();
1435 self.emit(&StringLower { realloc });
1436 }
1437 Type::ErrorContext => self.emit(&ErrorContextLower),
1438 Type::Id(id) => match &self.resolve.types[id].kind {
1439 TypeDefKind::Type(t) => self.lower(t),
1440 TypeDefKind::List(element) => {
1441 let realloc = self.list_realloc();
1442 if self.bindgen.is_list_canonical(self.resolve, element) {
1443 self.emit(&ListCanonLower { element, realloc });
1444 } else {
1445 self.push_block();
1446 self.emit(&IterElem { element });
1447 self.emit(&IterBasePointer);
1448 let addr = self.stack.pop().unwrap();
1449 self.write_to_memory(element, addr, Default::default());
1450 self.finish_block(0);
1451 self.emit(&ListLower { element, realloc });
1452 }
1453 }
1454 TypeDefKind::Handle(handle) => {
1455 let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
1456 self.emit(&HandleLower {
1457 handle,
1458 ty: id,
1459 name: self.resolve.types[*ty].name.as_deref().unwrap(),
1460 });
1461 }
1462 TypeDefKind::Resource => {
1463 todo!();
1464 }
1465 TypeDefKind::Record(record) => {
1466 self.emit(&RecordLower {
1467 record,
1468 ty: id,
1469 name: self.resolve.types[id].name.as_deref().unwrap(),
1470 });
1471 let values = self
1472 .stack
1473 .drain(self.stack.len() - record.fields.len()..)
1474 .collect::<Vec<_>>();
1475 for (field, value) in record.fields.iter().zip(values) {
1476 self.stack.push(value);
1477 self.lower(&field.ty);
1478 }
1479 }
1480 TypeDefKind::Tuple(tuple) => {
1481 self.emit(&TupleLower { tuple, ty: id });
1482 let values = self
1483 .stack
1484 .drain(self.stack.len() - tuple.types.len()..)
1485 .collect::<Vec<_>>();
1486 for (ty, value) in tuple.types.iter().zip(values) {
1487 self.stack.push(value);
1488 self.lower(ty);
1489 }
1490 }
1491
1492 TypeDefKind::Flags(flags) => {
1493 self.emit(&FlagsLower {
1494 flags,
1495 ty: id,
1496 name: self.resolve.types[id].name.as_ref().unwrap(),
1497 });
1498 }
1499
1500 TypeDefKind::Variant(v) => {
1501 let results =
1502 self.lower_variant_arms(ty, v.cases.iter().map(|c| c.ty.as_ref()));
1503 self.emit(&VariantLower {
1504 variant: v,
1505 ty: id,
1506 results: &results,
1507 name: self.resolve.types[id].name.as_deref().unwrap(),
1508 });
1509 }
1510 TypeDefKind::Enum(enum_) => {
1511 self.emit(&EnumLower {
1512 enum_,
1513 ty: id,
1514 name: self.resolve.types[id].name.as_deref().unwrap(),
1515 });
1516 }
1517 TypeDefKind::Option(t) => {
1518 let results = self.lower_variant_arms(ty, [None, Some(t)]);
1519 self.emit(&OptionLower {
1520 payload: t,
1521 ty: id,
1522 results: &results,
1523 });
1524 }
1525 TypeDefKind::Result(r) => {
1526 let results = self.lower_variant_arms(ty, [r.ok.as_ref(), r.err.as_ref()]);
1527 self.emit(&ResultLower {
1528 result: r,
1529 ty: id,
1530 results: &results,
1531 });
1532 }
1533 TypeDefKind::Future(ty) => {
1534 self.emit(&FutureLower {
1535 payload: ty,
1536 ty: id,
1537 });
1538 }
1539 TypeDefKind::Stream(ty) => {
1540 self.emit(&StreamLower {
1541 payload: ty,
1542 ty: id,
1543 });
1544 }
1545 TypeDefKind::Unknown => unreachable!(),
1546 TypeDefKind::FixedSizeList(..) => todo!(),
1547 },
1548 }
1549 }
1550
1551 fn lower_variant_arms<'b>(
1552 &mut self,
1553 ty: &Type,
1554 cases: impl IntoIterator<Item = Option<&'b Type>>,
1555 ) -> Vec<WasmType> {
1556 use Instruction::*;
1557 let results = flat_types(self.resolve, ty, None).unwrap();
1558 let mut casts = Vec::new();
1559 for (i, ty) in cases.into_iter().enumerate() {
1560 self.push_block();
1561 self.emit(&VariantPayloadName);
1562 let payload_name = self.stack.pop().unwrap();
1563 self.emit(&I32Const { val: i as i32 });
1564 let mut pushed = 1;
1565 if let Some(ty) = ty {
1566 // Using the payload of this block we lower the type to
1567 // raw wasm values.
1568 self.stack.push(payload_name);
1569 self.lower(ty);
1570
1571 // Determine the types of all the wasm values we just
1572 // pushed, and record how many. If we pushed too few
1573 // then we'll need to push some zeros after this.
1574 let temp = flat_types(self.resolve, ty, None).unwrap();
1575 pushed += temp.len();
1576
1577 // For all the types pushed we may need to insert some
1578 // bitcasts. This will go through and cast everything
1579 // to the right type to ensure all blocks produce the
1580 // same set of results.
1581 casts.truncate(0);
1582 for (actual, expected) in temp.iter().zip(&results[1..]) {
1583 casts.push(cast(*actual, *expected));
1584 }
1585 if casts.iter().any(|c| *c != Bitcast::None) {
1586 self.emit(&Bitcasts { casts: &casts });
1587 }
1588 }
1589
1590 // If we haven't pushed enough items in this block to match
1591 // what other variants are pushing then we need to push
1592 // some zeros.
1593 if pushed < results.len() {
1594 self.emit(&ConstZero {
1595 tys: &results[pushed..],
1596 });
1597 }
1598 self.finish_block(results.len());
1599 }
1600 results
1601 }
1602
1603 fn list_realloc(&self) -> Option<&'static str> {
1604 match self.realloc.expect("realloc should be configured") {
1605 Realloc::None => None,
1606 Realloc::Export(s) => Some(s),
1607 }
1608 }
1609
1610 /// Note that in general everything in this function is the opposite of the
1611 /// `lower` function above. This is intentional and should be kept this way!
1612 fn lift(&mut self, ty: &Type) {
1613 use Instruction::*;
1614
1615 match *ty {
1616 Type::Bool => self.emit(&BoolFromI32),
1617 Type::S8 => self.emit(&S8FromI32),
1618 Type::U8 => self.emit(&U8FromI32),
1619 Type::S16 => self.emit(&S16FromI32),
1620 Type::U16 => self.emit(&U16FromI32),
1621 Type::S32 => self.emit(&S32FromI32),
1622 Type::U32 => self.emit(&U32FromI32),
1623 Type::S64 => self.emit(&S64FromI64),
1624 Type::U64 => self.emit(&U64FromI64),
1625 Type::Char => self.emit(&CharFromI32),
1626 Type::F32 => self.emit(&F32FromCoreF32),
1627 Type::F64 => self.emit(&F64FromCoreF64),
1628 Type::String => self.emit(&StringLift),
1629 Type::ErrorContext => self.emit(&ErrorContextLift),
1630 Type::Id(id) => match &self.resolve.types[id].kind {
1631 TypeDefKind::Type(t) => self.lift(t),
1632 TypeDefKind::List(element) => {
1633 if self.bindgen.is_list_canonical(self.resolve, element) {
1634 self.emit(&ListCanonLift { element, ty: id });
1635 } else {
1636 self.push_block();
1637 self.emit(&IterBasePointer);
1638 let addr = self.stack.pop().unwrap();
1639 self.read_from_memory(element, addr, Default::default());
1640 self.finish_block(1);
1641 self.emit(&ListLift { element, ty: id });
1642 }
1643 }
1644 TypeDefKind::Handle(handle) => {
1645 let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
1646 self.emit(&HandleLift {
1647 handle,
1648 ty: id,
1649 name: self.resolve.types[*ty].name.as_deref().unwrap(),
1650 });
1651 }
1652 TypeDefKind::Resource => {
1653 todo!();
1654 }
1655 TypeDefKind::Record(record) => {
1656 self.flat_for_each_record_type(
1657 ty,
1658 record.fields.iter().map(|f| &f.ty),
1659 Self::lift,
1660 );
1661 self.emit(&RecordLift {
1662 record,
1663 ty: id,
1664 name: self.resolve.types[id].name.as_deref().unwrap(),
1665 });
1666 }
1667 TypeDefKind::Tuple(tuple) => {
1668 self.flat_for_each_record_type(ty, tuple.types.iter(), Self::lift);
1669 self.emit(&TupleLift { tuple, ty: id });
1670 }
1671 TypeDefKind::Flags(flags) => {
1672 self.emit(&FlagsLift {
1673 flags,
1674 ty: id,
1675 name: self.resolve.types[id].name.as_ref().unwrap(),
1676 });
1677 }
1678
1679 TypeDefKind::Variant(v) => {
1680 self.flat_for_each_variant_arm(
1681 ty,
1682 true,
1683 v.cases.iter().map(|c| c.ty.as_ref()),
1684 Self::lift,
1685 );
1686 self.emit(&VariantLift {
1687 variant: v,
1688 ty: id,
1689 name: self.resolve.types[id].name.as_deref().unwrap(),
1690 });
1691 }
1692
1693 TypeDefKind::Enum(enum_) => {
1694 self.emit(&EnumLift {
1695 enum_,
1696 ty: id,
1697 name: self.resolve.types[id].name.as_deref().unwrap(),
1698 });
1699 }
1700
1701 TypeDefKind::Option(t) => {
1702 self.flat_for_each_variant_arm(ty, true, [None, Some(t)], Self::lift);
1703 self.emit(&OptionLift { payload: t, ty: id });
1704 }
1705
1706 TypeDefKind::Result(r) => {
1707 self.flat_for_each_variant_arm(
1708 ty,
1709 true,
1710 [r.ok.as_ref(), r.err.as_ref()],
1711 Self::lift,
1712 );
1713 self.emit(&ResultLift { result: r, ty: id });
1714 }
1715
1716 TypeDefKind::Future(ty) => {
1717 self.emit(&FutureLift {
1718 payload: ty,
1719 ty: id,
1720 });
1721 }
1722 TypeDefKind::Stream(ty) => {
1723 self.emit(&StreamLift {
1724 payload: ty,
1725 ty: id,
1726 });
1727 }
1728 TypeDefKind::Unknown => unreachable!(),
1729 TypeDefKind::FixedSizeList(..) => todo!(),
1730 },
1731 }
1732 }
1733
1734 fn flat_for_each_record_type<'b>(
1735 &mut self,
1736 container: &Type,
1737 types: impl Iterator<Item = &'b Type>,
1738 mut iter: impl FnMut(&mut Self, &Type),
1739 ) {
1740 let temp = flat_types(self.resolve, container, None).unwrap();
1741 let mut args = self
1742 .stack
1743 .drain(self.stack.len() - temp.len()..)
1744 .collect::<Vec<_>>();
1745 for ty in types {
1746 let temp = flat_types(self.resolve, ty, None).unwrap();
1747 self.stack.extend(args.drain(..temp.len()));
1748 iter(self, ty);
1749 }
1750 }
1751
1752 fn flat_for_each_variant_arm<'b>(
1753 &mut self,
1754 ty: &Type,
1755 blocks_with_type_have_result: bool,
1756 cases: impl IntoIterator<Item = Option<&'b Type>>,
1757 mut iter: impl FnMut(&mut Self, &Type),
1758 ) {
1759 let params = flat_types(self.resolve, ty, None).unwrap();
1760 let mut casts = Vec::new();
1761 let block_inputs = self
1762 .stack
1763 .drain(self.stack.len() + 1 - params.len()..)
1764 .collect::<Vec<_>>();
1765 for ty in cases {
1766 self.push_block();
1767 if let Some(ty) = ty {
1768 // Push only the values we need for this variant onto
1769 // the stack.
1770 let temp = flat_types(self.resolve, ty, None).unwrap();
1771 self.stack
1772 .extend(block_inputs[..temp.len()].iter().cloned());
1773
1774 // Cast all the types we have on the stack to the actual
1775 // types needed for this variant, if necessary.
1776 casts.truncate(0);
1777 for (actual, expected) in temp.iter().zip(¶ms[1..]) {
1778 casts.push(cast(*expected, *actual));
1779 }
1780 if casts.iter().any(|c| *c != Bitcast::None) {
1781 self.emit(&Instruction::Bitcasts { casts: &casts });
1782 }
1783
1784 // Then recursively lift this variant's payload.
1785 iter(self, ty);
1786 }
1787 self.finish_block(if blocks_with_type_have_result {
1788 ty.is_some() as usize
1789 } else {
1790 0
1791 });
1792 }
1793 }
1794
1795 fn write_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1796 use Instruction::*;
1797
1798 match *ty {
1799 // Builtin types need different flavors of storage instructions
1800 // depending on the size of the value written.
1801 Type::Bool | Type::U8 | Type::S8 => {
1802 self.lower_and_emit(ty, addr, &I32Store8 { offset })
1803 }
1804 Type::U16 | Type::S16 => self.lower_and_emit(ty, addr, &I32Store16 { offset }),
1805 Type::U32 | Type::S32 | Type::Char => {
1806 self.lower_and_emit(ty, addr, &I32Store { offset })
1807 }
1808 Type::U64 | Type::S64 => self.lower_and_emit(ty, addr, &I64Store { offset }),
1809 Type::F32 => self.lower_and_emit(ty, addr, &F32Store { offset }),
1810 Type::F64 => self.lower_and_emit(ty, addr, &F64Store { offset }),
1811 Type::String => self.write_list_to_memory(ty, addr, offset),
1812 Type::ErrorContext => self.lower_and_emit(ty, addr, &I32Store { offset }),
1813
1814 Type::Id(id) => match &self.resolve.types[id].kind {
1815 TypeDefKind::Type(t) => self.write_to_memory(t, addr, offset),
1816 TypeDefKind::List(_) => self.write_list_to_memory(ty, addr, offset),
1817
1818 TypeDefKind::Future(_) | TypeDefKind::Stream(_) | TypeDefKind::Handle(_) => {
1819 self.lower_and_emit(ty, addr, &I32Store { offset })
1820 }
1821
1822 // Decompose the record into its components and then write all
1823 // the components into memory one-by-one.
1824 TypeDefKind::Record(record) => {
1825 self.emit(&RecordLower {
1826 record,
1827 ty: id,
1828 name: self.resolve.types[id].name.as_deref().unwrap(),
1829 });
1830 self.write_fields_to_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
1831 }
1832 TypeDefKind::Resource => {
1833 todo!()
1834 }
1835 TypeDefKind::Tuple(tuple) => {
1836 self.emit(&TupleLower { tuple, ty: id });
1837 self.write_fields_to_memory(tuple.types.iter(), addr, offset);
1838 }
1839
1840 TypeDefKind::Flags(f) => {
1841 self.lower(ty);
1842 match f.repr() {
1843 FlagsRepr::U8 => {
1844 self.stack.push(addr);
1845 self.store_intrepr(offset, Int::U8);
1846 }
1847 FlagsRepr::U16 => {
1848 self.stack.push(addr);
1849 self.store_intrepr(offset, Int::U16);
1850 }
1851 FlagsRepr::U32(n) => {
1852 for i in (0..n).rev() {
1853 self.stack.push(addr.clone());
1854 self.emit(&I32Store {
1855 offset: offset.add_bytes(i * 4),
1856 });
1857 }
1858 }
1859 }
1860 }
1861
1862 // Each case will get its own block, and the first item in each
1863 // case is writing the discriminant. After that if we have a
1864 // payload we write the payload after the discriminant, aligned up
1865 // to the type's alignment.
1866 TypeDefKind::Variant(v) => {
1867 self.write_variant_arms_to_memory(
1868 offset,
1869 addr,
1870 v.tag(),
1871 v.cases.iter().map(|c| c.ty.as_ref()),
1872 );
1873 self.emit(&VariantLower {
1874 variant: v,
1875 ty: id,
1876 results: &[],
1877 name: self.resolve.types[id].name.as_deref().unwrap(),
1878 });
1879 }
1880
1881 TypeDefKind::Option(t) => {
1882 self.write_variant_arms_to_memory(offset, addr, Int::U8, [None, Some(t)]);
1883 self.emit(&OptionLower {
1884 payload: t,
1885 ty: id,
1886 results: &[],
1887 });
1888 }
1889
1890 TypeDefKind::Result(r) => {
1891 self.write_variant_arms_to_memory(
1892 offset,
1893 addr,
1894 Int::U8,
1895 [r.ok.as_ref(), r.err.as_ref()],
1896 );
1897 self.emit(&ResultLower {
1898 result: r,
1899 ty: id,
1900 results: &[],
1901 });
1902 }
1903
1904 TypeDefKind::Enum(e) => {
1905 self.lower(ty);
1906 self.stack.push(addr);
1907 self.store_intrepr(offset, e.tag());
1908 }
1909
1910 TypeDefKind::Unknown => unreachable!(),
1911 TypeDefKind::FixedSizeList(..) => todo!(),
1912 },
1913 }
1914 }
1915
1916 fn write_params_to_memory<'b>(
1917 &mut self,
1918 params: impl IntoIterator<Item = &'b Type, IntoIter: ExactSizeIterator>,
1919 addr: B::Operand,
1920 offset: ArchitectureSize,
1921 ) {
1922 self.write_fields_to_memory(params, addr, offset);
1923 }
1924
1925 fn write_variant_arms_to_memory<'b>(
1926 &mut self,
1927 offset: ArchitectureSize,
1928 addr: B::Operand,
1929 tag: Int,
1930 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
1931 ) {
1932 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
1933 for (i, ty) in cases.into_iter().enumerate() {
1934 self.push_block();
1935 self.emit(&Instruction::VariantPayloadName);
1936 let payload_name = self.stack.pop().unwrap();
1937 self.emit(&Instruction::I32Const { val: i as i32 });
1938 self.stack.push(addr.clone());
1939 self.store_intrepr(offset, tag);
1940 if let Some(ty) = ty {
1941 self.stack.push(payload_name.clone());
1942 self.write_to_memory(ty, addr.clone(), payload_offset);
1943 }
1944 self.finish_block(0);
1945 }
1946 }
1947
1948 fn write_list_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1949 // After lowering the list there's two i32 values on the stack
1950 // which we write into memory, writing the pointer into the low address
1951 // and the length into the high address.
1952 self.lower(ty);
1953 self.stack.push(addr.clone());
1954 self.emit(&Instruction::LengthStore {
1955 offset: offset + self.bindgen.sizes().align(ty).into(),
1956 });
1957 self.stack.push(addr);
1958 self.emit(&Instruction::PointerStore { offset });
1959 }
1960
1961 fn write_fields_to_memory<'b>(
1962 &mut self,
1963 tys: impl IntoIterator<Item = &'b Type, IntoIter: ExactSizeIterator>,
1964 addr: B::Operand,
1965 offset: ArchitectureSize,
1966 ) {
1967 let tys = tys.into_iter();
1968 let fields = self
1969 .stack
1970 .drain(self.stack.len() - tys.len()..)
1971 .collect::<Vec<_>>();
1972 for ((field_offset, ty), op) in self
1973 .bindgen
1974 .sizes()
1975 .field_offsets(tys)
1976 .into_iter()
1977 .zip(fields)
1978 {
1979 self.stack.push(op);
1980 self.write_to_memory(ty, addr.clone(), offset + (field_offset));
1981 }
1982 }
1983
1984 fn lower_and_emit(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
1985 self.lower(ty);
1986 self.stack.push(addr);
1987 self.emit(instr);
1988 }
1989
1990 fn read_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1991 use Instruction::*;
1992
1993 match *ty {
1994 Type::Bool => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
1995 Type::U8 => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
1996 Type::S8 => self.emit_and_lift(ty, addr, &I32Load8S { offset }),
1997 Type::U16 => self.emit_and_lift(ty, addr, &I32Load16U { offset }),
1998 Type::S16 => self.emit_and_lift(ty, addr, &I32Load16S { offset }),
1999 Type::U32 | Type::S32 | Type::Char => self.emit_and_lift(ty, addr, &I32Load { offset }),
2000 Type::U64 | Type::S64 => self.emit_and_lift(ty, addr, &I64Load { offset }),
2001 Type::F32 => self.emit_and_lift(ty, addr, &F32Load { offset }),
2002 Type::F64 => self.emit_and_lift(ty, addr, &F64Load { offset }),
2003 Type::String => self.read_list_from_memory(ty, addr, offset),
2004 Type::ErrorContext => self.emit_and_lift(ty, addr, &I32Load { offset }),
2005
2006 Type::Id(id) => match &self.resolve.types[id].kind {
2007 TypeDefKind::Type(t) => self.read_from_memory(t, addr, offset),
2008
2009 TypeDefKind::List(_) => self.read_list_from_memory(ty, addr, offset),
2010
2011 TypeDefKind::Future(_) | TypeDefKind::Stream(_) | TypeDefKind::Handle(_) => {
2012 self.emit_and_lift(ty, addr, &I32Load { offset })
2013 }
2014
2015 TypeDefKind::Resource => {
2016 todo!();
2017 }
2018
2019 // Read and lift each field individually, adjusting the offset
2020 // as we go along, then aggregate all the fields into the
2021 // record.
2022 TypeDefKind::Record(record) => {
2023 self.read_fields_from_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
2024 self.emit(&RecordLift {
2025 record,
2026 ty: id,
2027 name: self.resolve.types[id].name.as_deref().unwrap(),
2028 });
2029 }
2030
2031 TypeDefKind::Tuple(tuple) => {
2032 self.read_fields_from_memory(&tuple.types, addr, offset);
2033 self.emit(&TupleLift { tuple, ty: id });
2034 }
2035
2036 TypeDefKind::Flags(f) => {
2037 match f.repr() {
2038 FlagsRepr::U8 => {
2039 self.stack.push(addr);
2040 self.load_intrepr(offset, Int::U8);
2041 }
2042 FlagsRepr::U16 => {
2043 self.stack.push(addr);
2044 self.load_intrepr(offset, Int::U16);
2045 }
2046 FlagsRepr::U32(n) => {
2047 for i in 0..n {
2048 self.stack.push(addr.clone());
2049 self.emit(&I32Load {
2050 offset: offset.add_bytes(i * 4),
2051 });
2052 }
2053 }
2054 }
2055 self.lift(ty);
2056 }
2057
2058 // Each case will get its own block, and we'll dispatch to the
2059 // right block based on the `i32.load` we initially perform. Each
2060 // individual block is pretty simple and just reads the payload type
2061 // from the corresponding offset if one is available.
2062 TypeDefKind::Variant(variant) => {
2063 self.read_variant_arms_from_memory(
2064 offset,
2065 addr,
2066 variant.tag(),
2067 variant.cases.iter().map(|c| c.ty.as_ref()),
2068 );
2069 self.emit(&VariantLift {
2070 variant,
2071 ty: id,
2072 name: self.resolve.types[id].name.as_deref().unwrap(),
2073 });
2074 }
2075
2076 TypeDefKind::Option(t) => {
2077 self.read_variant_arms_from_memory(offset, addr, Int::U8, [None, Some(t)]);
2078 self.emit(&OptionLift { payload: t, ty: id });
2079 }
2080
2081 TypeDefKind::Result(r) => {
2082 self.read_variant_arms_from_memory(
2083 offset,
2084 addr,
2085 Int::U8,
2086 [r.ok.as_ref(), r.err.as_ref()],
2087 );
2088 self.emit(&ResultLift { result: r, ty: id });
2089 }
2090
2091 TypeDefKind::Enum(e) => {
2092 self.stack.push(addr.clone());
2093 self.load_intrepr(offset, e.tag());
2094 self.lift(ty);
2095 }
2096
2097 TypeDefKind::Unknown => unreachable!(),
2098 TypeDefKind::FixedSizeList(..) => todo!(),
2099 },
2100 }
2101 }
2102
2103 fn read_results_from_memory(
2104 &mut self,
2105 result: &Option<Type>,
2106 addr: B::Operand,
2107 offset: ArchitectureSize,
2108 ) {
2109 self.read_fields_from_memory(result, addr, offset)
2110 }
2111
2112 fn read_variant_arms_from_memory<'b>(
2113 &mut self,
2114 offset: ArchitectureSize,
2115 addr: B::Operand,
2116 tag: Int,
2117 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
2118 ) {
2119 self.stack.push(addr.clone());
2120 self.load_intrepr(offset, tag);
2121 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
2122 for ty in cases {
2123 self.push_block();
2124 if let Some(ty) = ty {
2125 self.read_from_memory(ty, addr.clone(), payload_offset);
2126 }
2127 self.finish_block(ty.is_some() as usize);
2128 }
2129 }
2130
2131 fn read_list_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
2132 // Read the pointer/len and then perform the standard lifting
2133 // proceses.
2134 self.stack.push(addr.clone());
2135 self.emit(&Instruction::PointerLoad { offset });
2136 self.stack.push(addr);
2137 self.emit(&Instruction::LengthLoad {
2138 offset: offset + self.bindgen.sizes().align(ty).into(),
2139 });
2140 self.lift(ty);
2141 }
2142
2143 fn read_fields_from_memory<'b>(
2144 &mut self,
2145 tys: impl IntoIterator<Item = &'b Type>,
2146 addr: B::Operand,
2147 offset: ArchitectureSize,
2148 ) {
2149 for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys).iter() {
2150 self.read_from_memory(ty, addr.clone(), offset + (*field_offset));
2151 }
2152 }
2153
2154 fn emit_and_lift(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
2155 self.stack.push(addr);
2156 self.emit(instr);
2157 self.lift(ty);
2158 }
2159
2160 fn load_intrepr(&mut self, offset: ArchitectureSize, repr: Int) {
2161 self.emit(&match repr {
2162 Int::U64 => Instruction::I64Load { offset },
2163 Int::U32 => Instruction::I32Load { offset },
2164 Int::U16 => Instruction::I32Load16U { offset },
2165 Int::U8 => Instruction::I32Load8U { offset },
2166 });
2167 }
2168
2169 fn store_intrepr(&mut self, offset: ArchitectureSize, repr: Int) {
2170 self.emit(&match repr {
2171 Int::U64 => Instruction::I64Store { offset },
2172 Int::U32 => Instruction::I32Store { offset },
2173 Int::U16 => Instruction::I32Store16 { offset },
2174 Int::U8 => Instruction::I32Store8 { offset },
2175 });
2176 }
2177
2178 /// Runs the deallocation of `ty` for the operands currently on
2179 /// `self.stack`.
2180 ///
2181 /// This will pop the ABI items of `ty` from `self.stack`.
2182 fn deallocate(&mut self, ty: &Type, what: Deallocate) {
2183 use Instruction::*;
2184
2185 match *ty {
2186 Type::String => {
2187 self.emit(&Instruction::GuestDeallocateString);
2188 }
2189
2190 Type::Bool
2191 | Type::U8
2192 | Type::S8
2193 | Type::U16
2194 | Type::S16
2195 | Type::U32
2196 | Type::S32
2197 | Type::Char
2198 | Type::U64
2199 | Type::S64
2200 | Type::F32
2201 | Type::F64
2202 | Type::ErrorContext => {
2203 // No deallocation necessary, just discard the operand on the
2204 // stack.
2205 self.stack.pop().unwrap();
2206 }
2207
2208 Type::Id(id) => match &self.resolve.types[id].kind {
2209 TypeDefKind::Type(t) => self.deallocate(t, what),
2210
2211 TypeDefKind::List(element) => {
2212 self.push_block();
2213 self.emit(&IterBasePointer);
2214 let elemaddr = self.stack.pop().unwrap();
2215 self.deallocate_indirect(element, elemaddr, Default::default(), what);
2216 self.finish_block(0);
2217
2218 self.emit(&Instruction::GuestDeallocateList { element });
2219 }
2220
2221 TypeDefKind::Handle(Handle::Own(_))
2222 | TypeDefKind::Future(_)
2223 | TypeDefKind::Stream(_)
2224 if what.handles() =>
2225 {
2226 self.lift(ty);
2227 self.emit(&DropHandle { ty });
2228 }
2229
2230 TypeDefKind::Record(record) => {
2231 self.flat_for_each_record_type(
2232 ty,
2233 record.fields.iter().map(|f| &f.ty),
2234 |me, ty| me.deallocate(ty, what),
2235 );
2236 }
2237
2238 TypeDefKind::Tuple(tuple) => {
2239 self.flat_for_each_record_type(ty, tuple.types.iter(), |me, ty| {
2240 me.deallocate(ty, what)
2241 });
2242 }
2243
2244 TypeDefKind::Variant(variant) => {
2245 self.flat_for_each_variant_arm(
2246 ty,
2247 false,
2248 variant.cases.iter().map(|c| c.ty.as_ref()),
2249 |me, ty| me.deallocate(ty, what),
2250 );
2251 self.emit(&GuestDeallocateVariant {
2252 blocks: variant.cases.len(),
2253 });
2254 }
2255
2256 TypeDefKind::Option(t) => {
2257 self.flat_for_each_variant_arm(ty, false, [None, Some(t)], |me, ty| {
2258 me.deallocate(ty, what)
2259 });
2260 self.emit(&GuestDeallocateVariant { blocks: 2 });
2261 }
2262
2263 TypeDefKind::Result(e) => {
2264 self.flat_for_each_variant_arm(
2265 ty,
2266 false,
2267 [e.ok.as_ref(), e.err.as_ref()],
2268 |me, ty| me.deallocate(ty, what),
2269 );
2270 self.emit(&GuestDeallocateVariant { blocks: 2 });
2271 }
2272
2273 // discard the operand on the stack, otherwise nothing to free.
2274 TypeDefKind::Flags(_)
2275 | TypeDefKind::Enum(_)
2276 | TypeDefKind::Future(_)
2277 | TypeDefKind::Stream(_)
2278 | TypeDefKind::Handle(Handle::Own(_))
2279 | TypeDefKind::Handle(Handle::Borrow(_)) => {
2280 self.stack.pop().unwrap();
2281 }
2282
2283 TypeDefKind::Resource => unreachable!(),
2284 TypeDefKind::Unknown => unreachable!(),
2285
2286 TypeDefKind::FixedSizeList(..) => todo!(),
2287 },
2288 }
2289 }
2290
2291 fn deallocate_indirect(
2292 &mut self,
2293 ty: &Type,
2294 addr: B::Operand,
2295 offset: ArchitectureSize,
2296 what: Deallocate,
2297 ) {
2298 use Instruction::*;
2299
2300 // No need to execute any instructions if this type itself doesn't
2301 // require any form of post-return.
2302 if !needs_deallocate(self.resolve, ty, what) {
2303 return;
2304 }
2305
2306 match *ty {
2307 Type::String => {
2308 self.stack.push(addr.clone());
2309 self.emit(&Instruction::PointerLoad { offset });
2310 self.stack.push(addr);
2311 self.emit(&Instruction::LengthLoad {
2312 offset: offset + self.bindgen.sizes().align(ty).into(),
2313 });
2314 self.deallocate(ty, what);
2315 }
2316
2317 Type::Bool
2318 | Type::U8
2319 | Type::S8
2320 | Type::U16
2321 | Type::S16
2322 | Type::U32
2323 | Type::S32
2324 | Type::Char
2325 | Type::U64
2326 | Type::S64
2327 | Type::F32
2328 | Type::F64
2329 | Type::ErrorContext => {}
2330
2331 Type::Id(id) => match &self.resolve.types[id].kind {
2332 TypeDefKind::Type(t) => self.deallocate_indirect(t, addr, offset, what),
2333
2334 TypeDefKind::List(_) => {
2335 self.stack.push(addr.clone());
2336 self.emit(&Instruction::PointerLoad { offset });
2337 self.stack.push(addr);
2338 self.emit(&Instruction::LengthLoad {
2339 offset: offset + self.bindgen.sizes().align(ty).into(),
2340 });
2341
2342 self.deallocate(ty, what);
2343 }
2344
2345 TypeDefKind::Handle(Handle::Own(_))
2346 | TypeDefKind::Future(_)
2347 | TypeDefKind::Stream(_)
2348 if what.handles() =>
2349 {
2350 self.read_from_memory(ty, addr, offset);
2351 self.emit(&DropHandle { ty });
2352 }
2353
2354 TypeDefKind::Handle(Handle::Own(_)) => unreachable!(),
2355 TypeDefKind::Handle(Handle::Borrow(_)) => unreachable!(),
2356 TypeDefKind::Resource => unreachable!(),
2357
2358 TypeDefKind::Record(record) => {
2359 self.deallocate_indirect_fields(
2360 &record.fields.iter().map(|f| f.ty).collect::<Vec<_>>(),
2361 addr,
2362 offset,
2363 what,
2364 );
2365 }
2366
2367 TypeDefKind::Tuple(tuple) => {
2368 self.deallocate_indirect_fields(&tuple.types, addr, offset, what);
2369 }
2370
2371 TypeDefKind::Flags(_) => {}
2372
2373 TypeDefKind::Variant(variant) => {
2374 self.deallocate_indirect_variant(
2375 offset,
2376 addr,
2377 variant.tag(),
2378 variant.cases.iter().map(|c| c.ty.as_ref()),
2379 what,
2380 );
2381 self.emit(&GuestDeallocateVariant {
2382 blocks: variant.cases.len(),
2383 });
2384 }
2385
2386 TypeDefKind::Option(t) => {
2387 self.deallocate_indirect_variant(offset, addr, Int::U8, [None, Some(t)], what);
2388 self.emit(&GuestDeallocateVariant { blocks: 2 });
2389 }
2390
2391 TypeDefKind::Result(e) => {
2392 self.deallocate_indirect_variant(
2393 offset,
2394 addr,
2395 Int::U8,
2396 [e.ok.as_ref(), e.err.as_ref()],
2397 what,
2398 );
2399 self.emit(&GuestDeallocateVariant { blocks: 2 });
2400 }
2401
2402 TypeDefKind::Enum(_) => {}
2403
2404 TypeDefKind::Future(_) => unreachable!(),
2405 TypeDefKind::Stream(_) => unreachable!(),
2406 TypeDefKind::Unknown => unreachable!(),
2407 TypeDefKind::FixedSizeList(..) => todo!(),
2408 },
2409 }
2410 }
2411
2412 fn deallocate_indirect_variant<'b>(
2413 &mut self,
2414 offset: ArchitectureSize,
2415 addr: B::Operand,
2416 tag: Int,
2417 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
2418 what: Deallocate,
2419 ) {
2420 self.stack.push(addr.clone());
2421 self.load_intrepr(offset, tag);
2422 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
2423 for ty in cases {
2424 self.push_block();
2425 if let Some(ty) = ty {
2426 self.deallocate_indirect(ty, addr.clone(), payload_offset, what);
2427 }
2428 self.finish_block(0);
2429 }
2430 }
2431
2432 fn deallocate_indirect_fields(
2433 &mut self,
2434 tys: &[Type],
2435 addr: B::Operand,
2436 offset: ArchitectureSize,
2437 what: Deallocate,
2438 ) {
2439 for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys) {
2440 self.deallocate_indirect(ty, addr.clone(), offset + (field_offset), what);
2441 }
2442 }
2443}
2444
2445fn cast(from: WasmType, to: WasmType) -> Bitcast {
2446 use WasmType::*;
2447
2448 match (from, to) {
2449 (I32, I32)
2450 | (I64, I64)
2451 | (F32, F32)
2452 | (F64, F64)
2453 | (Pointer, Pointer)
2454 | (PointerOrI64, PointerOrI64)
2455 | (Length, Length) => Bitcast::None,
2456
2457 (I32, I64) => Bitcast::I32ToI64,
2458 (F32, I32) => Bitcast::F32ToI32,
2459 (F64, I64) => Bitcast::F64ToI64,
2460
2461 (I64, I32) => Bitcast::I64ToI32,
2462 (I32, F32) => Bitcast::I32ToF32,
2463 (I64, F64) => Bitcast::I64ToF64,
2464
2465 (F32, I64) => Bitcast::F32ToI64,
2466 (I64, F32) => Bitcast::I64ToF32,
2467
2468 (I64, PointerOrI64) => Bitcast::I64ToP64,
2469 (Pointer, PointerOrI64) => Bitcast::PToP64,
2470 (_, PointerOrI64) => {
2471 Bitcast::Sequence(Box::new([cast(from, I64), cast(I64, PointerOrI64)]))
2472 }
2473
2474 (PointerOrI64, I64) => Bitcast::P64ToI64,
2475 (PointerOrI64, Pointer) => Bitcast::P64ToP,
2476 (PointerOrI64, _) => Bitcast::Sequence(Box::new([cast(PointerOrI64, I64), cast(I64, to)])),
2477
2478 (I32, Pointer) => Bitcast::I32ToP,
2479 (Pointer, I32) => Bitcast::PToI32,
2480 (I32, Length) => Bitcast::I32ToL,
2481 (Length, I32) => Bitcast::LToI32,
2482 (I64, Length) => Bitcast::I64ToL,
2483 (Length, I64) => Bitcast::LToI64,
2484 (Pointer, Length) => Bitcast::PToL,
2485 (Length, Pointer) => Bitcast::LToP,
2486
2487 (F32, Pointer | Length) => Bitcast::Sequence(Box::new([cast(F32, I32), cast(I32, to)])),
2488 (Pointer | Length, F32) => Bitcast::Sequence(Box::new([cast(from, I32), cast(I32, F32)])),
2489
2490 (F32, F64)
2491 | (F64, F32)
2492 | (F64, I32)
2493 | (I32, F64)
2494 | (Pointer | Length, I64 | F64)
2495 | (I64 | F64, Pointer | Length) => {
2496 unreachable!("Don't know how to bitcast from {:?} to {:?}", from, to);
2497 }
2498 }
2499}
2500
2501/// Flatten types in a given type
2502///
2503/// It is sometimes necessary to restrict the number of max parameters dynamically,
2504/// for example during an async guest import call (flat params are limited to 4)
2505fn flat_types(resolve: &Resolve, ty: &Type, max_params: Option<usize>) -> Option<Vec<WasmType>> {
2506 let max_params = max_params.unwrap_or(MAX_FLAT_PARAMS);
2507 let mut storage = iter::repeat_n(WasmType::I32, max_params).collect::<Vec<_>>();
2508 let mut flat = FlatTypes::new(storage.as_mut_slice());
2509 resolve.push_flat(ty, &mut flat).then_some(flat.to_vec())
2510}