wit_bindgen_core/abi.rs
1use std::fmt;
2use std::iter;
3
4pub use wit_parser::abi::{AbiVariant, FlatTypes, WasmSignature, WasmType};
5use wit_parser::{
6 Alignment, ArchitectureSize, ElementInfo, Enum, Flags, FlagsRepr, Function, Handle, Int,
7 Record, Resolve, Result_, SizeAlign, Tuple, Type, TypeDefKind, TypeId, Variant, align_to_arch,
8};
9
10// Helper macro for defining instructions without having to have tons of
11// exhaustive `match` statements to update
12macro_rules! def_instruction {
13 (
14 $( #[$enum_attr:meta] )*
15 pub enum $name:ident<'a> {
16 $(
17 $( #[$attr:meta] )*
18 $variant:ident $( {
19 $($field:ident : $field_ty:ty $(,)* )*
20 } )?
21 :
22 [$num_popped:expr] => [$num_pushed:expr],
23 )*
24 }
25 ) => {
26 $( #[$enum_attr] )*
27 pub enum $name<'a> {
28 $(
29 $( #[$attr] )*
30 $variant $( {
31 $(
32 $field : $field_ty,
33 )*
34 } )? ,
35 )*
36 }
37
38 impl $name<'_> {
39 /// How many operands does this instruction pop from the stack?
40 #[allow(unused_variables)]
41 pub fn operands_len(&self) -> usize {
42 match self {
43 $(
44 Self::$variant $( {
45 $(
46 $field,
47 )*
48 } )? => $num_popped,
49 )*
50 }
51 }
52
53 /// How many results does this instruction push onto the stack?
54 #[allow(unused_variables)]
55 pub fn results_len(&self) -> usize {
56 match self {
57 $(
58 Self::$variant $( {
59 $(
60 $field,
61 )*
62 } )? => $num_pushed,
63 )*
64 }
65 }
66 }
67 };
68}
69
70def_instruction! {
71 #[derive(Debug)]
72 pub enum Instruction<'a> {
73 /// Acquires the specified parameter and places it on the stack.
74 /// Depending on the context this may refer to wasm parameters or
75 /// interface types parameters.
76 GetArg { nth: usize } : [0] => [1],
77
78 // Integer const/manipulation instructions
79
80 /// Pushes the constant `val` onto the stack.
81 I32Const { val: i32 } : [0] => [1],
82 /// Casts the top N items on the stack using the `Bitcast` enum
83 /// provided. Consumes the same number of operands that this produces.
84 Bitcasts { casts: &'a [Bitcast] } : [casts.len()] => [casts.len()],
85 /// Pushes a number of constant zeros for each wasm type on the stack.
86 ConstZero { tys: &'a [WasmType] } : [0] => [tys.len()],
87
88 // Memory load/store instructions
89
90 /// Pops a pointer from the stack and loads a little-endian `i32` from
91 /// it, using the specified constant offset.
92 I32Load { offset: ArchitectureSize } : [1] => [1],
93 /// Pops a pointer from the stack and loads a little-endian `i8` from
94 /// it, using the specified constant offset. The value loaded is the
95 /// zero-extended to 32-bits
96 I32Load8U { offset: ArchitectureSize } : [1] => [1],
97 /// Pops a pointer from the stack and loads a little-endian `i8` from
98 /// it, using the specified constant offset. The value loaded is the
99 /// sign-extended to 32-bits
100 I32Load8S { offset: ArchitectureSize } : [1] => [1],
101 /// Pops a pointer from the stack and loads a little-endian `i16` from
102 /// it, using the specified constant offset. The value loaded is the
103 /// zero-extended to 32-bits
104 I32Load16U { offset: ArchitectureSize } : [1] => [1],
105 /// Pops a pointer from the stack and loads a little-endian `i16` from
106 /// it, using the specified constant offset. The value loaded is the
107 /// sign-extended to 32-bits
108 I32Load16S { offset: ArchitectureSize } : [1] => [1],
109 /// Pops a pointer from the stack and loads a little-endian `i64` from
110 /// it, using the specified constant offset.
111 I64Load { offset: ArchitectureSize } : [1] => [1],
112 /// Pops a pointer from the stack and loads a little-endian `f32` from
113 /// it, using the specified constant offset.
114 F32Load { offset: ArchitectureSize } : [1] => [1],
115 /// Pops a pointer from the stack and loads a little-endian `f64` from
116 /// it, using the specified constant offset.
117 F64Load { offset: ArchitectureSize } : [1] => [1],
118
119 /// Like `I32Load` or `I64Load`, but for loading pointer values.
120 PointerLoad { offset: ArchitectureSize } : [1] => [1],
121 /// Like `I32Load` or `I64Load`, but for loading array length values.
122 LengthLoad { offset: ArchitectureSize } : [1] => [1],
123
124 /// Pops a pointer from the stack and then an `i32` value.
125 /// Stores the value in little-endian at the pointer specified plus the
126 /// constant `offset`.
127 I32Store { offset: ArchitectureSize } : [2] => [0],
128 /// Pops a pointer from the stack and then an `i32` value.
129 /// Stores the low 8 bits of the value in little-endian at the pointer
130 /// specified plus the constant `offset`.
131 I32Store8 { offset: ArchitectureSize } : [2] => [0],
132 /// Pops a pointer from the stack and then an `i32` value.
133 /// Stores the low 16 bits of the value in little-endian at the pointer
134 /// specified plus the constant `offset`.
135 I32Store16 { offset: ArchitectureSize } : [2] => [0],
136 /// Pops a pointer from the stack and then an `i64` value.
137 /// Stores the value in little-endian at the pointer specified plus the
138 /// constant `offset`.
139 I64Store { offset: ArchitectureSize } : [2] => [0],
140 /// Pops a pointer from the stack and then an `f32` value.
141 /// Stores the value in little-endian at the pointer specified plus the
142 /// constant `offset`.
143 F32Store { offset: ArchitectureSize } : [2] => [0],
144 /// Pops a pointer from the stack and then an `f64` value.
145 /// Stores the value in little-endian at the pointer specified plus the
146 /// constant `offset`.
147 F64Store { offset: ArchitectureSize } : [2] => [0],
148
149 /// Like `I32Store` or `I64Store`, but for storing pointer values.
150 PointerStore { offset: ArchitectureSize } : [2] => [0],
151 /// Like `I32Store` or `I64Store`, but for storing array length values.
152 LengthStore { offset: ArchitectureSize } : [2] => [0],
153
154 // Scalar lifting/lowering
155
156 /// Converts an interface type `char` value to a 32-bit integer
157 /// representing the unicode scalar value.
158 I32FromChar : [1] => [1],
159 /// Converts an interface type `u64` value to a wasm `i64`.
160 I64FromU64 : [1] => [1],
161 /// Converts an interface type `s64` value to a wasm `i64`.
162 I64FromS64 : [1] => [1],
163 /// Converts an interface type `u32` value to a wasm `i32`.
164 I32FromU32 : [1] => [1],
165 /// Converts an interface type `s32` value to a wasm `i32`.
166 I32FromS32 : [1] => [1],
167 /// Converts an interface type `u16` value to a wasm `i32`.
168 I32FromU16 : [1] => [1],
169 /// Converts an interface type `s16` value to a wasm `i32`.
170 I32FromS16 : [1] => [1],
171 /// Converts an interface type `u8` value to a wasm `i32`.
172 I32FromU8 : [1] => [1],
173 /// Converts an interface type `s8` value to a wasm `i32`.
174 I32FromS8 : [1] => [1],
175 /// Conversion an interface type `f32` value to a wasm `f32`.
176 ///
177 /// This may be a noop for some implementations, but it's here in case the
178 /// native language representation of `f32` is different than the wasm
179 /// representation of `f32`.
180 CoreF32FromF32 : [1] => [1],
181 /// Conversion an interface type `f64` value to a wasm `f64`.
182 ///
183 /// This may be a noop for some implementations, but it's here in case the
184 /// native language representation of `f64` is different than the wasm
185 /// representation of `f64`.
186 CoreF64FromF64 : [1] => [1],
187
188 /// Converts a native wasm `i32` to an interface type `s8`.
189 ///
190 /// This will truncate the upper bits of the `i32`.
191 S8FromI32 : [1] => [1],
192 /// Converts a native wasm `i32` to an interface type `u8`.
193 ///
194 /// This will truncate the upper bits of the `i32`.
195 U8FromI32 : [1] => [1],
196 /// Converts a native wasm `i32` to an interface type `s16`.
197 ///
198 /// This will truncate the upper bits of the `i32`.
199 S16FromI32 : [1] => [1],
200 /// Converts a native wasm `i32` to an interface type `u16`.
201 ///
202 /// This will truncate the upper bits of the `i32`.
203 U16FromI32 : [1] => [1],
204 /// Converts a native wasm `i32` to an interface type `s32`.
205 S32FromI32 : [1] => [1],
206 /// Converts a native wasm `i32` to an interface type `u32`.
207 U32FromI32 : [1] => [1],
208 /// Converts a native wasm `i64` to an interface type `s64`.
209 S64FromI64 : [1] => [1],
210 /// Converts a native wasm `i64` to an interface type `u64`.
211 U64FromI64 : [1] => [1],
212 /// Converts a native wasm `i32` to an interface type `char`.
213 ///
214 /// It's safe to assume that the `i32` is indeed a valid unicode code point.
215 CharFromI32 : [1] => [1],
216 /// Converts a native wasm `f32` to an interface type `f32`.
217 F32FromCoreF32 : [1] => [1],
218 /// Converts a native wasm `f64` to an interface type `f64`.
219 F64FromCoreF64 : [1] => [1],
220
221 /// Creates a `bool` from an `i32` input, trapping if the `i32` isn't
222 /// zero or one.
223 BoolFromI32 : [1] => [1],
224 /// Creates an `i32` from a `bool` input, must return 0 or 1.
225 I32FromBool : [1] => [1],
226
227 // lists
228
229 /// Lowers a list where the element's layout in the native language is
230 /// expected to match the canonical ABI definition of interface types.
231 ///
232 /// Pops a list value from the stack and pushes the pointer/length onto
233 /// the stack. If `realloc` is set to `Some` then this is expected to
234 /// *consume* the list which means that the data needs to be copied. An
235 /// allocation/copy is expected when:
236 ///
237 /// * A host is calling a wasm export with a list (it needs to copy the
238 /// list in to the callee's module, allocating space with `realloc`)
239 /// * A wasm export is returning a list (it's expected to use `realloc`
240 /// to give ownership of the list to the caller.
241 /// * A host is returning a list in a import definition, meaning that
242 /// space needs to be allocated in the caller with `realloc`).
243 ///
244 /// A copy does not happen (e.g. `realloc` is `None`) when:
245 ///
246 /// * A wasm module calls an import with the list. In this situation
247 /// it's expected the caller will know how to access this module's
248 /// memory (e.g. the host has raw access or wasm-to-wasm communication
249 /// would copy the list).
250 ///
251 /// If `realloc` is `Some` then the adapter is not responsible for
252 /// cleaning up this list because the other end is receiving the
253 /// allocation. If `realloc` is `None` then the adapter is responsible
254 /// for cleaning up any temporary allocation it created, if any.
255 ListCanonLower {
256 element: &'a Type,
257 realloc: Option<&'a str>,
258 } : [1] => [2],
259
260 /// Same as `ListCanonLower`, but used for strings
261 StringLower {
262 realloc: Option<&'a str>,
263 } : [1] => [2],
264
265 /// Lowers a list where the element's layout in the native language is
266 /// not expected to match the canonical ABI definition of interface
267 /// types.
268 ///
269 /// Pops a list value from the stack and pushes the pointer/length onto
270 /// the stack. This operation also pops a block from the block stack
271 /// which is used as the iteration body of writing each element of the
272 /// list consumed.
273 ///
274 /// The `realloc` field here behaves the same way as `ListCanonLower`.
275 /// It's only set to `None` when a wasm module calls a declared import.
276 /// Otherwise lowering in other contexts requires allocating memory for
277 /// the receiver to own.
278 ListLower {
279 element: &'a Type,
280 realloc: Option<&'a str>,
281 } : [1] => [2],
282
283 /// Lifts a list which has a canonical representation into an interface
284 /// types value.
285 ///
286 /// The term "canonical" representation here means that the
287 /// representation of the interface types value in the native language
288 /// exactly matches the canonical ABI definition of the type.
289 ///
290 /// This will consume two `i32` values from the stack, a pointer and a
291 /// length, and then produces an interface value list.
292 ListCanonLift {
293 element: &'a Type,
294 ty: TypeId,
295 } : [2] => [1],
296
297 /// Same as `ListCanonLift`, but used for strings
298 StringLift : [2] => [1],
299
300 /// Lifts a list which into an interface types value.
301 ///
302 /// This will consume two `i32` values from the stack, a pointer and a
303 /// length, and then produces an interface value list.
304 ///
305 /// This will also pop a block from the block stack which is how to
306 /// read each individual element from the list.
307 ListLift {
308 element: &'a Type,
309 ty: TypeId,
310 } : [2] => [1],
311
312 /// Pushes an operand onto the stack representing the list item from
313 /// each iteration of the list.
314 ///
315 /// This is only used inside of blocks related to lowering lists.
316 IterElem { element: &'a Type } : [0] => [1],
317
318 /// Pushes an operand onto the stack representing the base pointer of
319 /// the next element in a list.
320 ///
321 /// This is used for both lifting and lowering lists.
322 IterBasePointer : [0] => [1],
323
324 // records and tuples
325
326 /// Pops a record value off the stack, decomposes the record to all of
327 /// its fields, and then pushes the fields onto the stack.
328 RecordLower {
329 record: &'a Record,
330 name: &'a str,
331 ty: TypeId,
332 } : [1] => [record.fields.len()],
333
334 /// Pops all fields for a record off the stack and then composes them
335 /// into a record.
336 RecordLift {
337 record: &'a Record,
338 name: &'a str,
339 ty: TypeId,
340 } : [record.fields.len()] => [1],
341
342 /// Create an `i32` from a handle.
343 HandleLower {
344 handle: &'a Handle,
345 name: &'a str,
346 ty: TypeId,
347 } : [1] => [1],
348
349 /// Create a handle from an `i32`.
350 HandleLift {
351 handle: &'a Handle,
352 name: &'a str,
353 ty: TypeId,
354 } : [1] => [1],
355
356 /// Create an `i32` from a future.
357 FutureLower {
358 payload: &'a Option<Type>,
359 ty: TypeId,
360 } : [1] => [1],
361
362 /// Create a future from an `i32`.
363 FutureLift {
364 payload: &'a Option<Type>,
365 ty: TypeId,
366 } : [1] => [1],
367
368 /// Create an `i32` from a stream.
369 StreamLower {
370 payload: &'a Option<Type>,
371 ty: TypeId,
372 } : [1] => [1],
373
374 /// Create a stream from an `i32`.
375 StreamLift {
376 payload: &'a Option<Type>,
377 ty: TypeId,
378 } : [1] => [1],
379
380 /// Create an `i32` from an error-context.
381 ErrorContextLower : [1] => [1],
382
383 /// Create a error-context from an `i32`.
384 ErrorContextLift : [1] => [1],
385
386 /// Pops a tuple value off the stack, decomposes the tuple to all of
387 /// its fields, and then pushes the fields onto the stack.
388 TupleLower {
389 tuple: &'a Tuple,
390 ty: TypeId,
391 } : [1] => [tuple.types.len()],
392
393 /// Pops all fields for a tuple off the stack and then composes them
394 /// into a tuple.
395 TupleLift {
396 tuple: &'a Tuple,
397 ty: TypeId,
398 } : [tuple.types.len()] => [1],
399
400 /// Converts a language-specific record-of-bools to a list of `i32`.
401 FlagsLower {
402 flags: &'a Flags,
403 name: &'a str,
404 ty: TypeId,
405 } : [1] => [flags.repr().count()],
406 /// Converts a list of native wasm `i32` to a language-specific
407 /// record-of-bools.
408 FlagsLift {
409 flags: &'a Flags,
410 name: &'a str,
411 ty: TypeId,
412 } : [flags.repr().count()] => [1],
413
414 // variants
415
416 /// This is a special instruction used for `VariantLower`
417 /// instruction to determine the name of the payload, if present, to use
418 /// within each block.
419 ///
420 /// Each sub-block will have this be the first instruction, and if it
421 /// lowers a payload it will expect something bound to this name.
422 VariantPayloadName : [0] => [1],
423
424 /// Pops a variant off the stack as well as `ty.cases.len()` blocks
425 /// from the code generator. Uses each of those blocks and the value
426 /// from the stack to produce `nresults` of items.
427 VariantLower {
428 variant: &'a Variant,
429 name: &'a str,
430 ty: TypeId,
431 results: &'a [WasmType],
432 } : [1] => [results.len()],
433
434 /// Pops an `i32` off the stack as well as `ty.cases.len()` blocks
435 /// from the code generator. Uses each of those blocks and the value
436 /// from the stack to produce a final variant.
437 VariantLift {
438 variant: &'a Variant,
439 name: &'a str,
440 ty: TypeId,
441 } : [1] => [1],
442
443 /// Pops an enum off the stack and pushes the `i32` representation.
444 EnumLower {
445 enum_: &'a Enum,
446 name: &'a str,
447 ty: TypeId,
448 } : [1] => [1],
449
450 /// Pops an `i32` off the stack and lifts it into the `enum` specified.
451 EnumLift {
452 enum_: &'a Enum,
453 name: &'a str,
454 ty: TypeId,
455 } : [1] => [1],
456
457 /// Specialization of `VariantLower` for specifically `option<T>` types,
458 /// otherwise behaves the same as `VariantLower` (e.g. two blocks for
459 /// the two cases.
460 OptionLower {
461 payload: &'a Type,
462 ty: TypeId,
463 results: &'a [WasmType],
464 } : [1] => [results.len()],
465
466 /// Specialization of `VariantLift` for specifically the `option<T>`
467 /// type. Otherwise behaves the same as the `VariantLift` instruction
468 /// with two blocks for the lift.
469 OptionLift {
470 payload: &'a Type,
471 ty: TypeId,
472 } : [1] => [1],
473
474 /// Specialization of `VariantLower` for specifically `result<T, E>`
475 /// types, otherwise behaves the same as `VariantLower` (e.g. two blocks
476 /// for the two cases.
477 ResultLower {
478 result: &'a Result_
479 ty: TypeId,
480 results: &'a [WasmType],
481 } : [1] => [results.len()],
482
483 /// Specialization of `VariantLift` for specifically the `result<T,
484 /// E>` type. Otherwise behaves the same as the `VariantLift`
485 /// instruction with two blocks for the lift.
486 ResultLift {
487 result: &'a Result_,
488 ty: TypeId,
489 } : [1] => [1],
490
491 // calling/control flow
492
493 /// Represents a call to a raw WebAssembly API. The module/name are
494 /// provided inline as well as the types if necessary.
495 CallWasm {
496 name: &'a str,
497 sig: &'a WasmSignature,
498 } : [sig.params.len()] => [sig.results.len()],
499
500 /// Same as `CallWasm`, except the dual where an interface is being
501 /// called rather than a raw wasm function.
502 ///
503 /// Note that this will be used for async functions, and `async_`
504 /// indicates whether the function should be invoked in an async
505 /// fashion.
506 CallInterface {
507 func: &'a Function,
508 async_: bool,
509 } : [func.params.len()] => [usize::from(func.result.is_some())],
510
511 /// Returns `amt` values on the stack. This is always the last
512 /// instruction.
513 Return { amt: usize, func: &'a Function } : [*amt] => [0],
514
515 /// Calls the `realloc` function specified in a malloc-like fashion
516 /// allocating `size` bytes with alignment `align`.
517 ///
518 /// Pushes the returned pointer onto the stack.
519 Malloc {
520 realloc: &'static str,
521 size: ArchitectureSize,
522 align: Alignment,
523 } : [0] => [1],
524
525 /// Used exclusively for guest-code generation this indicates that
526 /// the standard memory deallocation function needs to be invoked with
527 /// the specified parameters.
528 ///
529 /// This will pop a pointer from the stack and push nothing.
530 GuestDeallocate {
531 size: ArchitectureSize,
532 align: Alignment,
533 } : [1] => [0],
534
535 /// Used exclusively for guest-code generation this indicates that
536 /// a string is being deallocated. The ptr/length are on the stack and
537 /// are poppped off and used to deallocate the string.
538 GuestDeallocateString : [2] => [0],
539
540 /// Used exclusively for guest-code generation this indicates that
541 /// a list is being deallocated. The ptr/length are on the stack and
542 /// are poppped off and used to deallocate the list.
543 ///
544 /// This variant also pops a block off the block stack to be used as the
545 /// body of the deallocation loop.
546 GuestDeallocateList {
547 element: &'a Type,
548 } : [2] => [0],
549
550 /// Used exclusively for guest-code generation this indicates that
551 /// a variant is being deallocated. The integer discriminant is popped
552 /// off the stack as well as `blocks` number of blocks popped from the
553 /// blocks stack. The variant is used to select, at runtime, which of
554 /// the blocks is executed to deallocate the variant.
555 GuestDeallocateVariant {
556 blocks: usize,
557 } : [1] => [0],
558
559 /// Deallocates the language-specific handle representation on the top
560 /// of the stack. Used for async imports.
561 DropHandle { ty: &'a Type } : [1] => [0],
562
563 /// Call `task.return` for an async-lifted export.
564 ///
565 /// This will call core wasm import `name` which will be mapped to
566 /// `task.return` later on. The function given has `params` as its
567 /// parameters and it will return no results. This is used to pass the
568 /// lowered representation of a function's results to `task.return`.
569 AsyncTaskReturn { name: &'a str, params: &'a [WasmType] } : [params.len()] => [0],
570
571 /// Force the evaluation of the specified number of expressions and push
572 /// the results to the stack.
573 ///
574 /// This is useful prior to disposing of temporary variables and/or
575 /// allocations which are referenced by one or more not-yet-evaluated
576 /// expressions.
577 Flush { amt: usize } : [*amt] => [*amt],
578 }
579}
580
581#[derive(Debug, PartialEq)]
582pub enum Bitcast {
583 // Upcasts
584 F32ToI32,
585 F64ToI64,
586 I32ToI64,
587 F32ToI64,
588
589 // Downcasts
590 I32ToF32,
591 I64ToF64,
592 I64ToI32,
593 I64ToF32,
594
595 // PointerOrI64 conversions. These preserve provenance when the source
596 // or destination is a pointer value.
597 //
598 // These are used when pointer values are being stored in
599 // (ToP64) and loaded out of (P64To) PointerOrI64 values, so they
600 // always have to preserve provenance when the value being loaded or
601 // stored is a pointer.
602 P64ToI64,
603 I64ToP64,
604 P64ToP,
605 PToP64,
606
607 // Pointer<->number conversions. These do not preserve provenance.
608 //
609 // These are used when integer or floating-point values are being stored in
610 // (I32ToP/etc.) and loaded out of (PToI32/etc.) pointer values, so they
611 // never have any provenance to preserve.
612 I32ToP,
613 PToI32,
614 PToL,
615 LToP,
616
617 // Number<->Number conversions.
618 I32ToL,
619 LToI32,
620 I64ToL,
621 LToI64,
622
623 // Multiple conversions in sequence.
624 Sequence(Box<[Bitcast; 2]>),
625
626 None,
627}
628
629/// Whether the glue code surrounding a call is lifting arguments and lowering
630/// results or vice versa.
631#[derive(Clone, Copy, PartialEq, Eq)]
632pub enum LiftLower {
633 /// When the glue code lifts arguments and lowers results.
634 ///
635 /// ```text
636 /// Wasm --lift-args--> SourceLanguage; call; SourceLanguage --lower-results--> Wasm
637 /// ```
638 LiftArgsLowerResults,
639 /// When the glue code lowers arguments and lifts results.
640 ///
641 /// ```text
642 /// SourceLanguage --lower-args--> Wasm; call; Wasm --lift-results--> SourceLanguage
643 /// ```
644 LowerArgsLiftResults,
645}
646
647/// Trait for language implementors to use to generate glue code between native
648/// WebAssembly signatures and interface types signatures.
649///
650/// This is used as an implementation detail in interpreting the ABI between
651/// interface types and wasm types. Eventually this will be driven by interface
652/// types adapters themselves, but for now the ABI of a function dictates what
653/// instructions are fed in.
654///
655/// Types implementing `Bindgen` are incrementally fed `Instruction` values to
656/// generate code for. Instructions operate like a stack machine where each
657/// instruction has a list of inputs and a list of outputs (provided by the
658/// `emit` function).
659pub trait Bindgen {
660 /// The intermediate type for fragments of code for this type.
661 ///
662 /// For most languages `String` is a suitable intermediate type.
663 type Operand: Clone + fmt::Debug;
664
665 /// Emit code to implement the given instruction.
666 ///
667 /// Each operand is given in `operands` and can be popped off if ownership
668 /// is required. It's guaranteed that `operands` has the appropriate length
669 /// for the `inst` given, as specified with [`Instruction`].
670 ///
671 /// Each result variable should be pushed onto `results`. This function must
672 /// push the appropriate number of results or binding generation will panic.
673 fn emit(
674 &mut self,
675 resolve: &Resolve,
676 inst: &Instruction<'_>,
677 operands: &mut Vec<Self::Operand>,
678 results: &mut Vec<Self::Operand>,
679 );
680
681 /// Gets a operand reference to the return pointer area.
682 ///
683 /// The provided size and alignment is for the function's return type.
684 fn return_pointer(&mut self, size: ArchitectureSize, align: Alignment) -> Self::Operand;
685
686 /// Enters a new block of code to generate code for.
687 ///
688 /// This is currently exclusively used for constructing variants. When a
689 /// variant is constructed a block here will be pushed for each case of a
690 /// variant, generating the code necessary to translate a variant case.
691 ///
692 /// Blocks are completed with `finish_block` below. It's expected that `emit`
693 /// will always push code (if necessary) into the "current block", which is
694 /// updated by calling this method and `finish_block` below.
695 fn push_block(&mut self);
696
697 /// Indicates to the code generator that a block is completed, and the
698 /// `operand` specified was the resulting value of the block.
699 ///
700 /// This method will be used to compute the value of each arm of lifting a
701 /// variant. The `operand` will be `None` if the variant case didn't
702 /// actually have any type associated with it. Otherwise it will be `Some`
703 /// as the last value remaining on the stack representing the value
704 /// associated with a variant's `case`.
705 ///
706 /// It's expected that this will resume code generation in the previous
707 /// block before `push_block` was called. This must also save the results
708 /// of the current block internally for instructions like `ResultLift` to
709 /// use later.
710 fn finish_block(&mut self, operand: &mut Vec<Self::Operand>);
711
712 /// Returns size information that was previously calculated for all types.
713 fn sizes(&self) -> &SizeAlign;
714
715 /// Returns whether or not the specified element type is represented in a
716 /// "canonical" form for lists. This dictates whether the `ListCanonLower`
717 /// and `ListCanonLift` instructions are used or not.
718 fn is_list_canonical(&self, resolve: &Resolve, element: &Type) -> bool;
719}
720
721/// Generates an abstract sequence of instructions which represents this
722/// function being adapted as an imported function.
723///
724/// The instructions here, when executed, will emulate a language with
725/// interface types calling the concrete wasm implementation. The parameters
726/// for the returned instruction sequence are the language's own
727/// interface-types parameters. One instruction in the instruction stream
728/// will be a `Call` which represents calling the actual raw wasm function
729/// signature.
730///
731/// This function is useful, for example, if you're building a language
732/// generator for WASI bindings. This will document how to translate
733/// language-specific values into the wasm types to call a WASI function,
734/// and it will also automatically convert the results of the WASI function
735/// back to a language-specific value.
736pub fn call(
737 resolve: &Resolve,
738 variant: AbiVariant,
739 lift_lower: LiftLower,
740 func: &Function,
741 bindgen: &mut impl Bindgen,
742 async_: bool,
743) {
744 Generator::new(resolve, bindgen).call(func, variant, lift_lower, async_);
745}
746
747pub fn lower_to_memory<B: Bindgen>(
748 resolve: &Resolve,
749 bindgen: &mut B,
750 address: B::Operand,
751 value: B::Operand,
752 ty: &Type,
753) {
754 let mut generator = Generator::new(resolve, bindgen);
755 // TODO: make this configurable? Right now this function is only called for
756 // future/stream callbacks so it's appropriate to skip realloc here as it's
757 // all "lower for wasm import", but this might get reused for something else
758 // in the future.
759 generator.realloc = Some(Realloc::Export("cabi_realloc"));
760 generator.stack.push(value);
761 generator.write_to_memory(ty, address, Default::default());
762}
763
764pub fn lower_flat<B: Bindgen>(
765 resolve: &Resolve,
766 bindgen: &mut B,
767 value: B::Operand,
768 ty: &Type,
769) -> Vec<B::Operand> {
770 let mut generator = Generator::new(resolve, bindgen);
771 generator.stack.push(value);
772 generator.realloc = Some(Realloc::Export("cabi_realloc"));
773 generator.lower(ty);
774 generator.stack
775}
776
777pub fn lift_from_memory<B: Bindgen>(
778 resolve: &Resolve,
779 bindgen: &mut B,
780 address: B::Operand,
781 ty: &Type,
782) -> B::Operand {
783 let mut generator = Generator::new(resolve, bindgen);
784 generator.read_from_memory(ty, address, Default::default());
785 generator.stack.pop().unwrap()
786}
787
788/// Used in a similar manner as the `Interface::call` function except is
789/// used to generate the `post-return` callback for `func`.
790///
791/// This is only intended to be used in guest generators for exported
792/// functions and will primarily generate `GuestDeallocate*` instructions,
793/// plus others used as input to those instructions.
794pub fn post_return(resolve: &Resolve, func: &Function, bindgen: &mut impl Bindgen) {
795 Generator::new(resolve, bindgen).post_return(func);
796}
797
798/// Returns whether the `Function` specified needs a post-return function to
799/// be generated in guest code.
800///
801/// This is used when the return value contains a memory allocation such as
802/// a list or a string primarily.
803pub fn guest_export_needs_post_return(resolve: &Resolve, func: &Function) -> bool {
804 func.result
805 .map(|t| needs_deallocate(resolve, &t, Deallocate::Lists))
806 .unwrap_or(false)
807}
808
809pub fn guest_export_params_have_allocations(resolve: &Resolve, func: &Function) -> bool {
810 func.params
811 .iter()
812 .any(|(_, t)| needs_deallocate(resolve, &t, Deallocate::Lists))
813}
814
815fn needs_deallocate(resolve: &Resolve, ty: &Type, what: Deallocate) -> bool {
816 match ty {
817 Type::String => true,
818 Type::ErrorContext => true,
819 Type::Id(id) => match &resolve.types[*id].kind {
820 TypeDefKind::List(_) => true,
821 TypeDefKind::Type(t) => needs_deallocate(resolve, t, what),
822 TypeDefKind::Handle(Handle::Own(_)) => what.handles(),
823 TypeDefKind::Handle(Handle::Borrow(_)) => false,
824 TypeDefKind::Resource => false,
825 TypeDefKind::Record(r) => r
826 .fields
827 .iter()
828 .any(|f| needs_deallocate(resolve, &f.ty, what)),
829 TypeDefKind::Tuple(t) => t.types.iter().any(|t| needs_deallocate(resolve, t, what)),
830 TypeDefKind::Variant(t) => t
831 .cases
832 .iter()
833 .filter_map(|t| t.ty.as_ref())
834 .any(|t| needs_deallocate(resolve, t, what)),
835 TypeDefKind::Option(t) => needs_deallocate(resolve, t, what),
836 TypeDefKind::Result(t) => [&t.ok, &t.err]
837 .iter()
838 .filter_map(|t| t.as_ref())
839 .any(|t| needs_deallocate(resolve, t, what)),
840 TypeDefKind::Flags(_) | TypeDefKind::Enum(_) => false,
841 TypeDefKind::Future(_) | TypeDefKind::Stream(_) => what.handles(),
842 TypeDefKind::Unknown => unreachable!(),
843 TypeDefKind::FixedSizeList(..) => todo!(),
844 },
845
846 Type::Bool
847 | Type::U8
848 | Type::S8
849 | Type::U16
850 | Type::S16
851 | Type::U32
852 | Type::S32
853 | Type::U64
854 | Type::S64
855 | Type::F32
856 | Type::F64
857 | Type::Char => false,
858 }
859}
860
861/// Generate instructions in `bindgen` to deallocate all lists in `ptr` where
862/// that's a pointer to a sequence of `types` stored in linear memory.
863pub fn deallocate_lists_in_types<B: Bindgen>(
864 resolve: &Resolve,
865 types: &[Type],
866 operands: &[B::Operand],
867 indirect: bool,
868 bindgen: &mut B,
869) {
870 Generator::new(resolve, bindgen).deallocate_in_types(
871 types,
872 operands,
873 indirect,
874 Deallocate::Lists,
875 );
876}
877
878/// Generate instructions in `bindgen` to deallocate all lists in `ptr` where
879/// that's a pointer to a sequence of `types` stored in linear memory.
880pub fn deallocate_lists_and_own_in_types<B: Bindgen>(
881 resolve: &Resolve,
882 types: &[Type],
883 operands: &[B::Operand],
884 indirect: bool,
885 bindgen: &mut B,
886) {
887 Generator::new(resolve, bindgen).deallocate_in_types(
888 types,
889 operands,
890 indirect,
891 Deallocate::ListsAndOwn,
892 );
893}
894
895#[derive(Copy, Clone)]
896pub enum Realloc {
897 None,
898 Export(&'static str),
899}
900
901/// What to deallocate in various `deallocate_*` methods.
902#[derive(Copy, Clone)]
903enum Deallocate {
904 /// Only deallocate lists.
905 Lists,
906 /// Deallocate lists and owned resources such as `own<T>` and
907 /// futures/streams.
908 ListsAndOwn,
909}
910
911impl Deallocate {
912 fn handles(&self) -> bool {
913 match self {
914 Deallocate::Lists => false,
915 Deallocate::ListsAndOwn => true,
916 }
917 }
918}
919
920struct Generator<'a, B: Bindgen> {
921 bindgen: &'a mut B,
922 resolve: &'a Resolve,
923 operands: Vec<B::Operand>,
924 results: Vec<B::Operand>,
925 stack: Vec<B::Operand>,
926 return_pointer: Option<B::Operand>,
927 realloc: Option<Realloc>,
928}
929
930const MAX_FLAT_PARAMS: usize = 16;
931const MAX_FLAT_ASYNC_PARAMS: usize = 4;
932
933impl<'a, B: Bindgen> Generator<'a, B> {
934 fn new(resolve: &'a Resolve, bindgen: &'a mut B) -> Generator<'a, B> {
935 Generator {
936 resolve,
937 bindgen,
938 operands: Vec::new(),
939 results: Vec::new(),
940 stack: Vec::new(),
941 return_pointer: None,
942 realloc: None,
943 }
944 }
945
946 fn call(&mut self, func: &Function, variant: AbiVariant, lift_lower: LiftLower, async_: bool) {
947 let sig = self.resolve.wasm_signature(variant, func);
948
949 // Lowering parameters calling a wasm import _or_ returning a result
950 // from an async-lifted wasm export means we don't need to pass
951 // ownership, but we pass ownership in all other cases.
952 let realloc = match (variant, lift_lower, async_) {
953 (AbiVariant::GuestImport, LiftLower::LowerArgsLiftResults, _)
954 | (
955 AbiVariant::GuestExport
956 | AbiVariant::GuestExportAsync
957 | AbiVariant::GuestExportAsyncStackful,
958 LiftLower::LiftArgsLowerResults,
959 true,
960 ) => Realloc::None,
961 _ => Realloc::Export("cabi_realloc"),
962 };
963 assert!(self.realloc.is_none());
964
965 match lift_lower {
966 LiftLower::LowerArgsLiftResults => {
967 self.realloc = Some(realloc);
968
969 // Create a function that performs individual lowering of operands
970 let lower_to_memory = |self_: &mut Self, ptr: B::Operand| {
971 let mut offset = ArchitectureSize::default();
972 for (nth, (_, ty)) in func.params.iter().enumerate() {
973 self_.emit(&Instruction::GetArg { nth });
974 offset = align_to_arch(offset, self_.bindgen.sizes().align(ty));
975 self_.write_to_memory(ty, ptr.clone(), offset);
976 offset += self_.bindgen.sizes().size(ty);
977 }
978
979 self_.stack.push(ptr);
980 };
981
982 // Lower parameters
983 if sig.indirect_params {
984 // If parameters are indirect space is
985 // allocated for them and each argument is lowered
986 // individually into memory.
987 let ElementInfo { size, align } = self
988 .bindgen
989 .sizes()
990 .record(func.params.iter().map(|t| &t.1));
991
992 // Resolve the pointer to the indirectly stored parameters
993 let ptr = match variant {
994 // When a wasm module calls an import it will provide
995 // space that isn't explicitly deallocated.
996 AbiVariant::GuestImport => self.bindgen.return_pointer(size, align),
997
998 AbiVariant::GuestImportAsync => {
999 todo!("direct param lowering for async guest import not implemented")
1000 }
1001
1002 // When calling a wasm module from the outside, though,
1003 // malloc needs to be called.
1004 AbiVariant::GuestExport => {
1005 self.emit(&Instruction::Malloc {
1006 realloc: "cabi_realloc",
1007 size,
1008 align,
1009 });
1010 self.stack.pop().unwrap()
1011 }
1012
1013 AbiVariant::GuestExportAsync | AbiVariant::GuestExportAsyncStackful => {
1014 todo!("direct param lowering for async not implemented")
1015 }
1016 };
1017
1018 // Lower the parameters to memory
1019 lower_to_memory(self, ptr);
1020 } else {
1021 // ... otherwise arguments are direct,
1022 // (there aren't too many) then we simply do a normal lower
1023 // operation for them all.
1024 for (nth, (_, ty)) in func.params.iter().enumerate() {
1025 self.emit(&Instruction::GetArg { nth });
1026 self.lower(ty);
1027 }
1028 }
1029 self.realloc = None;
1030
1031 // If necessary we may need to prepare a return pointer for this ABI.
1032 if variant == AbiVariant::GuestImport && sig.retptr {
1033 let info = self.bindgen.sizes().params(&func.result);
1034 let ptr = self.bindgen.return_pointer(info.size, info.align);
1035 self.return_pointer = Some(ptr.clone());
1036 self.stack.push(ptr);
1037 }
1038
1039 // Call the Wasm function
1040 assert_eq!(self.stack.len(), sig.params.len());
1041 self.emit(&Instruction::CallWasm {
1042 name: &func.name,
1043 sig: &sig,
1044 });
1045
1046 // Handle the result
1047 if sig.retptr {
1048 // If there is a return pointer, we must get the pointer to where results
1049 // should be stored, and store the results there?
1050
1051 let ptr = match variant {
1052 // imports into guests means it's a wasm module
1053 // calling an imported function. We supplied the
1054 // return pointer as the last argument (saved in
1055 // `self.return_pointer`) so we use that to read
1056 // the result of the function from memory.
1057 AbiVariant::GuestImport => {
1058 assert!(sig.results.is_empty());
1059 self.return_pointer.take().unwrap()
1060 }
1061
1062 // guest exports means that this is a host
1063 // calling wasm so wasm returned a pointer to where
1064 // the result is stored
1065 AbiVariant::GuestExport => self.stack.pop().unwrap(),
1066
1067 AbiVariant::GuestImportAsync
1068 | AbiVariant::GuestExportAsync
1069 | AbiVariant::GuestExportAsyncStackful => {
1070 unreachable!()
1071 }
1072 };
1073
1074 if let (AbiVariant::GuestExport, true) = (variant, async_) {
1075 // If we're dealing with an async function, the result should not be read from memory
1076 // immediately, as it's the async call result
1077 //
1078 // We can leave the result of the call (the indication of what to do as an async call)
1079 // on the stack as a return
1080 self.stack.push(ptr);
1081 } else {
1082 // If we're not dealing with an async call, the result must be in memory at this point and can be read out
1083 self.read_results_from_memory(
1084 &func.result,
1085 ptr.clone(),
1086 ArchitectureSize::default(),
1087 );
1088 self.emit(&Instruction::Flush {
1089 amt: usize::from(func.result.is_some()),
1090 });
1091 }
1092 } else {
1093 // With no return pointer in use we can simply lift the
1094 // result(s) of the function from the result of the core
1095 // wasm function.
1096 if let Some(ty) = &func.result {
1097 self.lift(ty)
1098 }
1099 }
1100
1101 // Emit the function return
1102 self.emit(&Instruction::Return {
1103 func,
1104 amt: usize::from(func.result.is_some()),
1105 });
1106 }
1107
1108 LiftLower::LiftArgsLowerResults => {
1109 let max_flat_params = match (variant, async_) {
1110 (AbiVariant::GuestImportAsync, _is_async @ true) => MAX_FLAT_ASYNC_PARAMS,
1111 _ => MAX_FLAT_PARAMS,
1112 };
1113
1114 // Read parameters from memory
1115 let read_from_memory = |self_: &mut Self| {
1116 let mut offset = ArchitectureSize::default();
1117 let ptr = self_
1118 .stack
1119 .pop()
1120 .expect("empty stack during read param from memory");
1121 for (_, ty) in func.params.iter() {
1122 offset = align_to_arch(offset, self_.bindgen.sizes().align(ty));
1123 self_.read_from_memory(ty, ptr.clone(), offset);
1124 offset += self_.bindgen.sizes().size(ty);
1125 }
1126 };
1127
1128 // Resolve parameters
1129 if sig.indirect_params {
1130 // If parameters were passed indirectly, arguments must be
1131 // read in succession from memory, with the pointer to the arguments
1132 // being the first argument to the function.
1133 self.emit(&Instruction::GetArg { nth: 0 });
1134 read_from_memory(self);
1135 } else {
1136 // ... otherwise, if parameters were passed directly then we lift each
1137 // argument in succession from the component wasm types that
1138 // make-up the type.
1139 let mut offset = 0;
1140 for (param_name, ty) in func.params.iter() {
1141 let Some(types) = flat_types(self.resolve, ty, Some(max_flat_params))
1142 else {
1143 panic!(
1144 "failed to flatten types during direct parameter lifting ('{param_name}' in func '{}')",
1145 func.name
1146 );
1147 };
1148 for _ in 0..types.len() {
1149 self.emit(&Instruction::GetArg { nth: offset });
1150 offset += 1;
1151 }
1152 self.lift(ty);
1153 }
1154 }
1155
1156 // ... and that allows us to call the interface types function
1157 self.emit(&Instruction::CallInterface { func, async_ });
1158
1159 // The return value of an async function is *not* the result of the function
1160 // itself or a pointer but rather a status code.
1161 //
1162 // Asynchronous functions will call `task.return` after the
1163 // interface function completes, so lowering is conditional
1164 // based on slightly different logic for the `task.return`
1165 // intrinsic.
1166 //
1167 // Note that in the async import case teh code below deals with the CM function being lowered,
1168 // not the core function that is underneath that (i.e. func.result may be empty,
1169 // where the associated core function underneath must have a i32 status code result)
1170 let (lower_to_memory, async_flat_results) = match (async_, &func.result) {
1171 // All async cases pass along the function results and flatten where necesary
1172 (_is_async @ true, func_result) => {
1173 let results = match &func_result {
1174 Some(ty) => flat_types(self.resolve, ty, Some(max_flat_params)),
1175 None => Some(Vec::new()),
1176 };
1177 (results.is_none(), Some(results))
1178 }
1179 // All other non-async cases
1180 (_is_async @ false, _) => (sig.retptr, None),
1181 };
1182
1183 // This was dynamically allocated by the caller (or async start
1184 // function) so after it's been read by the guest we need to
1185 // deallocate it.
1186 if let AbiVariant::GuestExport
1187 | AbiVariant::GuestExportAsync
1188 | AbiVariant::GuestExportAsyncStackful = variant
1189 {
1190 if sig.indirect_params && !async_ {
1191 let ElementInfo { size, align } = self
1192 .bindgen
1193 .sizes()
1194 .record(func.params.iter().map(|t| &t.1));
1195 self.emit(&Instruction::GetArg { nth: 0 });
1196 self.emit(&Instruction::GuestDeallocate { size, align });
1197 }
1198 }
1199
1200 self.realloc = Some(realloc);
1201
1202 // Perform memory lowing of relevant results, including out pointers as well as traditional results
1203 match (lower_to_memory, sig.retptr, variant) {
1204 // For sync calls, if no lowering to memory is required and there *is* a return pointer in use
1205 // then we need to lower then simply lower the result(s) and return that directly from the function.
1206 (_lower_to_memory @ false, _, _) => {
1207 if let Some(ty) = &func.result {
1208 self.lower(ty);
1209 }
1210 }
1211
1212 // Lowering to memory for a guest import
1213 //
1214 // When a function is imported to a guest this means
1215 // it's a host providing the implementation of the
1216 // import. The result is stored in the pointer
1217 // specified in the last argument, so we get the
1218 // pointer here and then write the return value into
1219 // it.
1220 (
1221 _lower_to_memory @ true,
1222 _has_ret_ptr @ true,
1223 AbiVariant::GuestImport | AbiVariant::GuestImportAsync,
1224 ) => {
1225 self.emit(&Instruction::GetArg {
1226 nth: sig.params.len() - 1,
1227 });
1228 let ptr = self
1229 .stack
1230 .pop()
1231 .expect("empty stack during result lower to memory");
1232 self.write_params_to_memory(&func.result, ptr, Default::default());
1233 }
1234
1235 // Lowering to memory for a guest export
1236 //
1237 // For a guest import this is a function defined in
1238 // wasm, so we're returning a pointer where the
1239 // value was stored at. Allocate some space here
1240 // (statically) and then write the result into that
1241 // memory, returning the pointer at the end.
1242 (_lower_to_memory @ true, _, variant) => match variant {
1243 AbiVariant::GuestExport | AbiVariant::GuestExportAsync => {
1244 let ElementInfo { size, align } =
1245 self.bindgen.sizes().params(&func.result);
1246 let ptr = self.bindgen.return_pointer(size, align);
1247 self.write_params_to_memory(
1248 &func.result,
1249 ptr.clone(),
1250 Default::default(),
1251 );
1252 self.stack.push(ptr);
1253 }
1254 AbiVariant::GuestImport | AbiVariant::GuestImportAsync => {
1255 unreachable!(
1256 "lowering to memory cannot be performed without a return pointer ({async_note} func [{func_name}], variant {variant:#?})",
1257 async_note = async_.then_some("async").unwrap_or("sync"),
1258 func_name = func.name,
1259 )
1260 }
1261 AbiVariant::GuestExportAsyncStackful => {
1262 todo!("stackful exports are not yet supported")
1263 }
1264 },
1265 }
1266
1267 // Build and emit the appropriate return
1268 match (variant, async_flat_results) {
1269 // Async guest imports always return a i32 status code
1270 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, None) if async_ => {
1271 unreachable!("async guest imports must have a return")
1272 }
1273
1274 // Async guest imports with results return the status code, not a pointer to any results
1275 (AbiVariant::GuestImport | AbiVariant::GuestImportAsync, Some(results))
1276 if async_ =>
1277 {
1278 let name = &format!("[task-return]{}", func.name);
1279 let params = results.as_deref().unwrap_or_default();
1280 self.emit(&Instruction::AsyncTaskReturn { name, params });
1281 }
1282
1283 // All async/non-async cases with results that need to be returned
1284 //
1285 // In practice, async imports should not end up here, as the returned result of an
1286 // async import is *not* a pointer but instead a status code.
1287 (_, Some(results)) => {
1288 let name = &format!("[task-return]{}", func.name);
1289 let params = results.as_deref().unwrap_or(&[WasmType::Pointer]);
1290 self.emit(&Instruction::AsyncTaskReturn { name, params });
1291 }
1292
1293 // All async/non-async cases with no results
1294 (_, None) => {
1295 if async_ {
1296 let name = &format!("[task-return]{}", func.name);
1297 self.emit(&Instruction::AsyncTaskReturn {
1298 name: name,
1299 params: if sig.results.len() > MAX_FLAT_ASYNC_PARAMS {
1300 &[WasmType::Pointer]
1301 } else {
1302 &sig.results
1303 },
1304 });
1305 } else {
1306 self.emit(&Instruction::Return {
1307 func,
1308 amt: sig.results.len(),
1309 });
1310 }
1311 }
1312 }
1313
1314 self.realloc = None;
1315 }
1316 }
1317
1318 assert!(self.realloc.is_none());
1319
1320 assert!(
1321 self.stack.is_empty(),
1322 "stack has {} items remaining: {:?}",
1323 self.stack.len(),
1324 self.stack,
1325 );
1326 }
1327
1328 fn post_return(&mut self, func: &Function) {
1329 let sig = self.resolve.wasm_signature(AbiVariant::GuestExport, func);
1330
1331 // Currently post-return is only used for lists and lists are always
1332 // returned indirectly through memory due to their flat representation
1333 // having more than one type. Assert that a return pointer is used,
1334 // though, in case this ever changes.
1335 assert!(sig.retptr);
1336
1337 self.emit(&Instruction::GetArg { nth: 0 });
1338 let addr = self.stack.pop().unwrap();
1339
1340 let mut types = Vec::new();
1341 types.extend(func.result);
1342 self.deallocate_in_types(&types, &[addr], true, Deallocate::Lists);
1343
1344 self.emit(&Instruction::Return { func, amt: 0 });
1345 }
1346
1347 fn deallocate_in_types(
1348 &mut self,
1349 types: &[Type],
1350 operands: &[B::Operand],
1351 indirect: bool,
1352 what: Deallocate,
1353 ) {
1354 if indirect {
1355 assert_eq!(operands.len(), 1);
1356 for (offset, ty) in self.bindgen.sizes().field_offsets(types) {
1357 self.deallocate_indirect(ty, operands[0].clone(), offset, what);
1358 }
1359 assert!(
1360 self.stack.is_empty(),
1361 "stack has {} items remaining",
1362 self.stack.len()
1363 );
1364 } else {
1365 let mut operands = operands;
1366 let mut operands_for_ty;
1367 for ty in types {
1368 let types = flat_types(self.resolve, ty, None).unwrap();
1369 (operands_for_ty, operands) = operands.split_at(types.len());
1370 self.stack.extend_from_slice(operands_for_ty);
1371 self.deallocate(ty, what);
1372 assert!(
1373 self.stack.is_empty(),
1374 "stack has {} items remaining",
1375 self.stack.len()
1376 );
1377 }
1378 assert!(operands.is_empty());
1379 }
1380 }
1381
1382 fn emit(&mut self, inst: &Instruction<'_>) {
1383 self.operands.clear();
1384 self.results.clear();
1385
1386 let operands_len = inst.operands_len();
1387 assert!(
1388 self.stack.len() >= operands_len,
1389 "not enough operands on stack for {:?}: have {} need {operands_len}",
1390 inst,
1391 self.stack.len(),
1392 );
1393 self.operands
1394 .extend(self.stack.drain((self.stack.len() - operands_len)..));
1395 self.results.reserve(inst.results_len());
1396
1397 self.bindgen
1398 .emit(self.resolve, inst, &mut self.operands, &mut self.results);
1399
1400 assert_eq!(
1401 self.results.len(),
1402 inst.results_len(),
1403 "{:?} expected {} results, got {}",
1404 inst,
1405 inst.results_len(),
1406 self.results.len()
1407 );
1408 self.stack.append(&mut self.results);
1409 }
1410
1411 fn push_block(&mut self) {
1412 self.bindgen.push_block();
1413 }
1414
1415 fn finish_block(&mut self, size: usize) {
1416 self.operands.clear();
1417 assert!(
1418 size <= self.stack.len(),
1419 "not enough operands on stack for finishing block",
1420 );
1421 self.operands
1422 .extend(self.stack.drain((self.stack.len() - size)..));
1423 self.bindgen.finish_block(&mut self.operands);
1424 }
1425
1426 fn lower(&mut self, ty: &Type) {
1427 use Instruction::*;
1428
1429 match *ty {
1430 Type::Bool => self.emit(&I32FromBool),
1431 Type::S8 => self.emit(&I32FromS8),
1432 Type::U8 => self.emit(&I32FromU8),
1433 Type::S16 => self.emit(&I32FromS16),
1434 Type::U16 => self.emit(&I32FromU16),
1435 Type::S32 => self.emit(&I32FromS32),
1436 Type::U32 => self.emit(&I32FromU32),
1437 Type::S64 => self.emit(&I64FromS64),
1438 Type::U64 => self.emit(&I64FromU64),
1439 Type::Char => self.emit(&I32FromChar),
1440 Type::F32 => self.emit(&CoreF32FromF32),
1441 Type::F64 => self.emit(&CoreF64FromF64),
1442 Type::String => {
1443 let realloc = self.list_realloc();
1444 self.emit(&StringLower { realloc });
1445 }
1446 Type::ErrorContext => self.emit(&ErrorContextLower),
1447 Type::Id(id) => match &self.resolve.types[id].kind {
1448 TypeDefKind::Type(t) => self.lower(t),
1449 TypeDefKind::List(element) => {
1450 let realloc = self.list_realloc();
1451 if self.bindgen.is_list_canonical(self.resolve, element) {
1452 self.emit(&ListCanonLower { element, realloc });
1453 } else {
1454 self.push_block();
1455 self.emit(&IterElem { element });
1456 self.emit(&IterBasePointer);
1457 let addr = self.stack.pop().unwrap();
1458 self.write_to_memory(element, addr, Default::default());
1459 self.finish_block(0);
1460 self.emit(&ListLower { element, realloc });
1461 }
1462 }
1463 TypeDefKind::Handle(handle) => {
1464 let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
1465 self.emit(&HandleLower {
1466 handle,
1467 ty: id,
1468 name: self.resolve.types[*ty].name.as_deref().unwrap(),
1469 });
1470 }
1471 TypeDefKind::Resource => {
1472 todo!();
1473 }
1474 TypeDefKind::Record(record) => {
1475 self.emit(&RecordLower {
1476 record,
1477 ty: id,
1478 name: self.resolve.types[id].name.as_deref().unwrap(),
1479 });
1480 let values = self
1481 .stack
1482 .drain(self.stack.len() - record.fields.len()..)
1483 .collect::<Vec<_>>();
1484 for (field, value) in record.fields.iter().zip(values) {
1485 self.stack.push(value);
1486 self.lower(&field.ty);
1487 }
1488 }
1489 TypeDefKind::Tuple(tuple) => {
1490 self.emit(&TupleLower { tuple, ty: id });
1491 let values = self
1492 .stack
1493 .drain(self.stack.len() - tuple.types.len()..)
1494 .collect::<Vec<_>>();
1495 for (ty, value) in tuple.types.iter().zip(values) {
1496 self.stack.push(value);
1497 self.lower(ty);
1498 }
1499 }
1500
1501 TypeDefKind::Flags(flags) => {
1502 self.emit(&FlagsLower {
1503 flags,
1504 ty: id,
1505 name: self.resolve.types[id].name.as_ref().unwrap(),
1506 });
1507 }
1508
1509 TypeDefKind::Variant(v) => {
1510 let results =
1511 self.lower_variant_arms(ty, v.cases.iter().map(|c| c.ty.as_ref()));
1512 self.emit(&VariantLower {
1513 variant: v,
1514 ty: id,
1515 results: &results,
1516 name: self.resolve.types[id].name.as_deref().unwrap(),
1517 });
1518 }
1519 TypeDefKind::Enum(enum_) => {
1520 self.emit(&EnumLower {
1521 enum_,
1522 ty: id,
1523 name: self.resolve.types[id].name.as_deref().unwrap(),
1524 });
1525 }
1526 TypeDefKind::Option(t) => {
1527 let results = self.lower_variant_arms(ty, [None, Some(t)]);
1528 self.emit(&OptionLower {
1529 payload: t,
1530 ty: id,
1531 results: &results,
1532 });
1533 }
1534 TypeDefKind::Result(r) => {
1535 let results = self.lower_variant_arms(ty, [r.ok.as_ref(), r.err.as_ref()]);
1536 self.emit(&ResultLower {
1537 result: r,
1538 ty: id,
1539 results: &results,
1540 });
1541 }
1542 TypeDefKind::Future(ty) => {
1543 self.emit(&FutureLower {
1544 payload: ty,
1545 ty: id,
1546 });
1547 }
1548 TypeDefKind::Stream(ty) => {
1549 self.emit(&StreamLower {
1550 payload: ty,
1551 ty: id,
1552 });
1553 }
1554 TypeDefKind::Unknown => unreachable!(),
1555 TypeDefKind::FixedSizeList(..) => todo!(),
1556 },
1557 }
1558 }
1559
1560 fn lower_variant_arms<'b>(
1561 &mut self,
1562 ty: &Type,
1563 cases: impl IntoIterator<Item = Option<&'b Type>>,
1564 ) -> Vec<WasmType> {
1565 use Instruction::*;
1566 let results = flat_types(self.resolve, ty, None).unwrap();
1567 let mut casts = Vec::new();
1568 for (i, ty) in cases.into_iter().enumerate() {
1569 self.push_block();
1570 self.emit(&VariantPayloadName);
1571 let payload_name = self.stack.pop().unwrap();
1572 self.emit(&I32Const { val: i as i32 });
1573 let mut pushed = 1;
1574 if let Some(ty) = ty {
1575 // Using the payload of this block we lower the type to
1576 // raw wasm values.
1577 self.stack.push(payload_name);
1578 self.lower(ty);
1579
1580 // Determine the types of all the wasm values we just
1581 // pushed, and record how many. If we pushed too few
1582 // then we'll need to push some zeros after this.
1583 let temp = flat_types(self.resolve, ty, None).unwrap();
1584 pushed += temp.len();
1585
1586 // For all the types pushed we may need to insert some
1587 // bitcasts. This will go through and cast everything
1588 // to the right type to ensure all blocks produce the
1589 // same set of results.
1590 casts.truncate(0);
1591 for (actual, expected) in temp.iter().zip(&results[1..]) {
1592 casts.push(cast(*actual, *expected));
1593 }
1594 if casts.iter().any(|c| *c != Bitcast::None) {
1595 self.emit(&Bitcasts { casts: &casts });
1596 }
1597 }
1598
1599 // If we haven't pushed enough items in this block to match
1600 // what other variants are pushing then we need to push
1601 // some zeros.
1602 if pushed < results.len() {
1603 self.emit(&ConstZero {
1604 tys: &results[pushed..],
1605 });
1606 }
1607 self.finish_block(results.len());
1608 }
1609 results
1610 }
1611
1612 fn list_realloc(&self) -> Option<&'static str> {
1613 match self.realloc.expect("realloc should be configured") {
1614 Realloc::None => None,
1615 Realloc::Export(s) => Some(s),
1616 }
1617 }
1618
1619 /// Note that in general everything in this function is the opposite of the
1620 /// `lower` function above. This is intentional and should be kept this way!
1621 fn lift(&mut self, ty: &Type) {
1622 use Instruction::*;
1623
1624 match *ty {
1625 Type::Bool => self.emit(&BoolFromI32),
1626 Type::S8 => self.emit(&S8FromI32),
1627 Type::U8 => self.emit(&U8FromI32),
1628 Type::S16 => self.emit(&S16FromI32),
1629 Type::U16 => self.emit(&U16FromI32),
1630 Type::S32 => self.emit(&S32FromI32),
1631 Type::U32 => self.emit(&U32FromI32),
1632 Type::S64 => self.emit(&S64FromI64),
1633 Type::U64 => self.emit(&U64FromI64),
1634 Type::Char => self.emit(&CharFromI32),
1635 Type::F32 => self.emit(&F32FromCoreF32),
1636 Type::F64 => self.emit(&F64FromCoreF64),
1637 Type::String => self.emit(&StringLift),
1638 Type::ErrorContext => self.emit(&ErrorContextLift),
1639 Type::Id(id) => match &self.resolve.types[id].kind {
1640 TypeDefKind::Type(t) => self.lift(t),
1641 TypeDefKind::List(element) => {
1642 if self.bindgen.is_list_canonical(self.resolve, element) {
1643 self.emit(&ListCanonLift { element, ty: id });
1644 } else {
1645 self.push_block();
1646 self.emit(&IterBasePointer);
1647 let addr = self.stack.pop().unwrap();
1648 self.read_from_memory(element, addr, Default::default());
1649 self.finish_block(1);
1650 self.emit(&ListLift { element, ty: id });
1651 }
1652 }
1653 TypeDefKind::Handle(handle) => {
1654 let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
1655 self.emit(&HandleLift {
1656 handle,
1657 ty: id,
1658 name: self.resolve.types[*ty].name.as_deref().unwrap(),
1659 });
1660 }
1661 TypeDefKind::Resource => {
1662 todo!();
1663 }
1664 TypeDefKind::Record(record) => {
1665 self.flat_for_each_record_type(
1666 ty,
1667 record.fields.iter().map(|f| &f.ty),
1668 Self::lift,
1669 );
1670 self.emit(&RecordLift {
1671 record,
1672 ty: id,
1673 name: self.resolve.types[id].name.as_deref().unwrap(),
1674 });
1675 }
1676 TypeDefKind::Tuple(tuple) => {
1677 self.flat_for_each_record_type(ty, tuple.types.iter(), Self::lift);
1678 self.emit(&TupleLift { tuple, ty: id });
1679 }
1680 TypeDefKind::Flags(flags) => {
1681 self.emit(&FlagsLift {
1682 flags,
1683 ty: id,
1684 name: self.resolve.types[id].name.as_ref().unwrap(),
1685 });
1686 }
1687
1688 TypeDefKind::Variant(v) => {
1689 self.flat_for_each_variant_arm(
1690 ty,
1691 true,
1692 v.cases.iter().map(|c| c.ty.as_ref()),
1693 Self::lift,
1694 );
1695 self.emit(&VariantLift {
1696 variant: v,
1697 ty: id,
1698 name: self.resolve.types[id].name.as_deref().unwrap(),
1699 });
1700 }
1701
1702 TypeDefKind::Enum(enum_) => {
1703 self.emit(&EnumLift {
1704 enum_,
1705 ty: id,
1706 name: self.resolve.types[id].name.as_deref().unwrap(),
1707 });
1708 }
1709
1710 TypeDefKind::Option(t) => {
1711 self.flat_for_each_variant_arm(ty, true, [None, Some(t)], Self::lift);
1712 self.emit(&OptionLift { payload: t, ty: id });
1713 }
1714
1715 TypeDefKind::Result(r) => {
1716 self.flat_for_each_variant_arm(
1717 ty,
1718 true,
1719 [r.ok.as_ref(), r.err.as_ref()],
1720 Self::lift,
1721 );
1722 self.emit(&ResultLift { result: r, ty: id });
1723 }
1724
1725 TypeDefKind::Future(ty) => {
1726 self.emit(&FutureLift {
1727 payload: ty,
1728 ty: id,
1729 });
1730 }
1731 TypeDefKind::Stream(ty) => {
1732 self.emit(&StreamLift {
1733 payload: ty,
1734 ty: id,
1735 });
1736 }
1737 TypeDefKind::Unknown => unreachable!(),
1738 TypeDefKind::FixedSizeList(..) => todo!(),
1739 },
1740 }
1741 }
1742
1743 fn flat_for_each_record_type<'b>(
1744 &mut self,
1745 container: &Type,
1746 types: impl Iterator<Item = &'b Type>,
1747 mut iter: impl FnMut(&mut Self, &Type),
1748 ) {
1749 let temp = flat_types(self.resolve, container, None).unwrap();
1750 let mut args = self
1751 .stack
1752 .drain(self.stack.len() - temp.len()..)
1753 .collect::<Vec<_>>();
1754 for ty in types {
1755 let temp = flat_types(self.resolve, ty, None).unwrap();
1756 self.stack.extend(args.drain(..temp.len()));
1757 iter(self, ty);
1758 }
1759 }
1760
1761 fn flat_for_each_variant_arm<'b>(
1762 &mut self,
1763 ty: &Type,
1764 blocks_with_type_have_result: bool,
1765 cases: impl IntoIterator<Item = Option<&'b Type>>,
1766 mut iter: impl FnMut(&mut Self, &Type),
1767 ) {
1768 let params = flat_types(self.resolve, ty, None).unwrap();
1769 let mut casts = Vec::new();
1770 let block_inputs = self
1771 .stack
1772 .drain(self.stack.len() + 1 - params.len()..)
1773 .collect::<Vec<_>>();
1774 for ty in cases {
1775 self.push_block();
1776 if let Some(ty) = ty {
1777 // Push only the values we need for this variant onto
1778 // the stack.
1779 let temp = flat_types(self.resolve, ty, None).unwrap();
1780 self.stack
1781 .extend(block_inputs[..temp.len()].iter().cloned());
1782
1783 // Cast all the types we have on the stack to the actual
1784 // types needed for this variant, if necessary.
1785 casts.truncate(0);
1786 for (actual, expected) in temp.iter().zip(¶ms[1..]) {
1787 casts.push(cast(*expected, *actual));
1788 }
1789 if casts.iter().any(|c| *c != Bitcast::None) {
1790 self.emit(&Instruction::Bitcasts { casts: &casts });
1791 }
1792
1793 // Then recursively lift this variant's payload.
1794 iter(self, ty);
1795 }
1796 self.finish_block(if blocks_with_type_have_result {
1797 ty.is_some() as usize
1798 } else {
1799 0
1800 });
1801 }
1802 }
1803
1804 fn write_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1805 use Instruction::*;
1806
1807 match *ty {
1808 // Builtin types need different flavors of storage instructions
1809 // depending on the size of the value written.
1810 Type::Bool | Type::U8 | Type::S8 => {
1811 self.lower_and_emit(ty, addr, &I32Store8 { offset })
1812 }
1813 Type::U16 | Type::S16 => self.lower_and_emit(ty, addr, &I32Store16 { offset }),
1814 Type::U32 | Type::S32 | Type::Char => {
1815 self.lower_and_emit(ty, addr, &I32Store { offset })
1816 }
1817 Type::U64 | Type::S64 => self.lower_and_emit(ty, addr, &I64Store { offset }),
1818 Type::F32 => self.lower_and_emit(ty, addr, &F32Store { offset }),
1819 Type::F64 => self.lower_and_emit(ty, addr, &F64Store { offset }),
1820 Type::String => self.write_list_to_memory(ty, addr, offset),
1821 Type::ErrorContext => self.lower_and_emit(ty, addr, &I32Store { offset }),
1822
1823 Type::Id(id) => match &self.resolve.types[id].kind {
1824 TypeDefKind::Type(t) => self.write_to_memory(t, addr, offset),
1825 TypeDefKind::List(_) => self.write_list_to_memory(ty, addr, offset),
1826
1827 TypeDefKind::Future(_) | TypeDefKind::Stream(_) | TypeDefKind::Handle(_) => {
1828 self.lower_and_emit(ty, addr, &I32Store { offset })
1829 }
1830
1831 // Decompose the record into its components and then write all
1832 // the components into memory one-by-one.
1833 TypeDefKind::Record(record) => {
1834 self.emit(&RecordLower {
1835 record,
1836 ty: id,
1837 name: self.resolve.types[id].name.as_deref().unwrap(),
1838 });
1839 self.write_fields_to_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
1840 }
1841 TypeDefKind::Resource => {
1842 todo!()
1843 }
1844 TypeDefKind::Tuple(tuple) => {
1845 self.emit(&TupleLower { tuple, ty: id });
1846 self.write_fields_to_memory(tuple.types.iter(), addr, offset);
1847 }
1848
1849 TypeDefKind::Flags(f) => {
1850 self.lower(ty);
1851 match f.repr() {
1852 FlagsRepr::U8 => {
1853 self.stack.push(addr);
1854 self.store_intrepr(offset, Int::U8);
1855 }
1856 FlagsRepr::U16 => {
1857 self.stack.push(addr);
1858 self.store_intrepr(offset, Int::U16);
1859 }
1860 FlagsRepr::U32(n) => {
1861 for i in (0..n).rev() {
1862 self.stack.push(addr.clone());
1863 self.emit(&I32Store {
1864 offset: offset.add_bytes(i * 4),
1865 });
1866 }
1867 }
1868 }
1869 }
1870
1871 // Each case will get its own block, and the first item in each
1872 // case is writing the discriminant. After that if we have a
1873 // payload we write the payload after the discriminant, aligned up
1874 // to the type's alignment.
1875 TypeDefKind::Variant(v) => {
1876 self.write_variant_arms_to_memory(
1877 offset,
1878 addr,
1879 v.tag(),
1880 v.cases.iter().map(|c| c.ty.as_ref()),
1881 );
1882 self.emit(&VariantLower {
1883 variant: v,
1884 ty: id,
1885 results: &[],
1886 name: self.resolve.types[id].name.as_deref().unwrap(),
1887 });
1888 }
1889
1890 TypeDefKind::Option(t) => {
1891 self.write_variant_arms_to_memory(offset, addr, Int::U8, [None, Some(t)]);
1892 self.emit(&OptionLower {
1893 payload: t,
1894 ty: id,
1895 results: &[],
1896 });
1897 }
1898
1899 TypeDefKind::Result(r) => {
1900 self.write_variant_arms_to_memory(
1901 offset,
1902 addr,
1903 Int::U8,
1904 [r.ok.as_ref(), r.err.as_ref()],
1905 );
1906 self.emit(&ResultLower {
1907 result: r,
1908 ty: id,
1909 results: &[],
1910 });
1911 }
1912
1913 TypeDefKind::Enum(e) => {
1914 self.lower(ty);
1915 self.stack.push(addr);
1916 self.store_intrepr(offset, e.tag());
1917 }
1918
1919 TypeDefKind::Unknown => unreachable!(),
1920 TypeDefKind::FixedSizeList(..) => todo!(),
1921 },
1922 }
1923 }
1924
1925 fn write_params_to_memory<'b>(
1926 &mut self,
1927 params: impl IntoIterator<Item = &'b Type, IntoIter: ExactSizeIterator>,
1928 addr: B::Operand,
1929 offset: ArchitectureSize,
1930 ) {
1931 self.write_fields_to_memory(params, addr, offset);
1932 }
1933
1934 fn write_variant_arms_to_memory<'b>(
1935 &mut self,
1936 offset: ArchitectureSize,
1937 addr: B::Operand,
1938 tag: Int,
1939 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
1940 ) {
1941 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
1942 for (i, ty) in cases.into_iter().enumerate() {
1943 self.push_block();
1944 self.emit(&Instruction::VariantPayloadName);
1945 let payload_name = self.stack.pop().unwrap();
1946 self.emit(&Instruction::I32Const { val: i as i32 });
1947 self.stack.push(addr.clone());
1948 self.store_intrepr(offset, tag);
1949 if let Some(ty) = ty {
1950 self.stack.push(payload_name.clone());
1951 self.write_to_memory(ty, addr.clone(), payload_offset);
1952 }
1953 self.finish_block(0);
1954 }
1955 }
1956
1957 fn write_list_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
1958 // After lowering the list there's two i32 values on the stack
1959 // which we write into memory, writing the pointer into the low address
1960 // and the length into the high address.
1961 self.lower(ty);
1962 self.stack.push(addr.clone());
1963 self.emit(&Instruction::LengthStore {
1964 offset: offset + self.bindgen.sizes().align(ty).into(),
1965 });
1966 self.stack.push(addr);
1967 self.emit(&Instruction::PointerStore { offset });
1968 }
1969
1970 fn write_fields_to_memory<'b>(
1971 &mut self,
1972 tys: impl IntoIterator<Item = &'b Type, IntoIter: ExactSizeIterator>,
1973 addr: B::Operand,
1974 offset: ArchitectureSize,
1975 ) {
1976 let tys = tys.into_iter();
1977 let fields = self
1978 .stack
1979 .drain(self.stack.len() - tys.len()..)
1980 .collect::<Vec<_>>();
1981 for ((field_offset, ty), op) in self
1982 .bindgen
1983 .sizes()
1984 .field_offsets(tys)
1985 .into_iter()
1986 .zip(fields)
1987 {
1988 self.stack.push(op);
1989 self.write_to_memory(ty, addr.clone(), offset + (field_offset));
1990 }
1991 }
1992
1993 fn lower_and_emit(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
1994 self.lower(ty);
1995 self.stack.push(addr);
1996 self.emit(instr);
1997 }
1998
1999 fn read_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
2000 use Instruction::*;
2001
2002 match *ty {
2003 Type::Bool => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
2004 Type::U8 => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
2005 Type::S8 => self.emit_and_lift(ty, addr, &I32Load8S { offset }),
2006 Type::U16 => self.emit_and_lift(ty, addr, &I32Load16U { offset }),
2007 Type::S16 => self.emit_and_lift(ty, addr, &I32Load16S { offset }),
2008 Type::U32 | Type::S32 | Type::Char => self.emit_and_lift(ty, addr, &I32Load { offset }),
2009 Type::U64 | Type::S64 => self.emit_and_lift(ty, addr, &I64Load { offset }),
2010 Type::F32 => self.emit_and_lift(ty, addr, &F32Load { offset }),
2011 Type::F64 => self.emit_and_lift(ty, addr, &F64Load { offset }),
2012 Type::String => self.read_list_from_memory(ty, addr, offset),
2013 Type::ErrorContext => self.emit_and_lift(ty, addr, &I32Load { offset }),
2014
2015 Type::Id(id) => match &self.resolve.types[id].kind {
2016 TypeDefKind::Type(t) => self.read_from_memory(t, addr, offset),
2017
2018 TypeDefKind::List(_) => self.read_list_from_memory(ty, addr, offset),
2019
2020 TypeDefKind::Future(_) | TypeDefKind::Stream(_) | TypeDefKind::Handle(_) => {
2021 self.emit_and_lift(ty, addr, &I32Load { offset })
2022 }
2023
2024 TypeDefKind::Resource => {
2025 todo!();
2026 }
2027
2028 // Read and lift each field individually, adjusting the offset
2029 // as we go along, then aggregate all the fields into the
2030 // record.
2031 TypeDefKind::Record(record) => {
2032 self.read_fields_from_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
2033 self.emit(&RecordLift {
2034 record,
2035 ty: id,
2036 name: self.resolve.types[id].name.as_deref().unwrap(),
2037 });
2038 }
2039
2040 TypeDefKind::Tuple(tuple) => {
2041 self.read_fields_from_memory(&tuple.types, addr, offset);
2042 self.emit(&TupleLift { tuple, ty: id });
2043 }
2044
2045 TypeDefKind::Flags(f) => {
2046 match f.repr() {
2047 FlagsRepr::U8 => {
2048 self.stack.push(addr);
2049 self.load_intrepr(offset, Int::U8);
2050 }
2051 FlagsRepr::U16 => {
2052 self.stack.push(addr);
2053 self.load_intrepr(offset, Int::U16);
2054 }
2055 FlagsRepr::U32(n) => {
2056 for i in 0..n {
2057 self.stack.push(addr.clone());
2058 self.emit(&I32Load {
2059 offset: offset.add_bytes(i * 4),
2060 });
2061 }
2062 }
2063 }
2064 self.lift(ty);
2065 }
2066
2067 // Each case will get its own block, and we'll dispatch to the
2068 // right block based on the `i32.load` we initially perform. Each
2069 // individual block is pretty simple and just reads the payload type
2070 // from the corresponding offset if one is available.
2071 TypeDefKind::Variant(variant) => {
2072 self.read_variant_arms_from_memory(
2073 offset,
2074 addr,
2075 variant.tag(),
2076 variant.cases.iter().map(|c| c.ty.as_ref()),
2077 );
2078 self.emit(&VariantLift {
2079 variant,
2080 ty: id,
2081 name: self.resolve.types[id].name.as_deref().unwrap(),
2082 });
2083 }
2084
2085 TypeDefKind::Option(t) => {
2086 self.read_variant_arms_from_memory(offset, addr, Int::U8, [None, Some(t)]);
2087 self.emit(&OptionLift { payload: t, ty: id });
2088 }
2089
2090 TypeDefKind::Result(r) => {
2091 self.read_variant_arms_from_memory(
2092 offset,
2093 addr,
2094 Int::U8,
2095 [r.ok.as_ref(), r.err.as_ref()],
2096 );
2097 self.emit(&ResultLift { result: r, ty: id });
2098 }
2099
2100 TypeDefKind::Enum(e) => {
2101 self.stack.push(addr.clone());
2102 self.load_intrepr(offset, e.tag());
2103 self.lift(ty);
2104 }
2105
2106 TypeDefKind::Unknown => unreachable!(),
2107 TypeDefKind::FixedSizeList(..) => todo!(),
2108 },
2109 }
2110 }
2111
2112 fn read_results_from_memory(
2113 &mut self,
2114 result: &Option<Type>,
2115 addr: B::Operand,
2116 offset: ArchitectureSize,
2117 ) {
2118 self.read_fields_from_memory(result, addr, offset)
2119 }
2120
2121 fn read_variant_arms_from_memory<'b>(
2122 &mut self,
2123 offset: ArchitectureSize,
2124 addr: B::Operand,
2125 tag: Int,
2126 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
2127 ) {
2128 self.stack.push(addr.clone());
2129 self.load_intrepr(offset, tag);
2130 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
2131 for ty in cases {
2132 self.push_block();
2133 if let Some(ty) = ty {
2134 self.read_from_memory(ty, addr.clone(), payload_offset);
2135 }
2136 self.finish_block(ty.is_some() as usize);
2137 }
2138 }
2139
2140 fn read_list_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: ArchitectureSize) {
2141 // Read the pointer/len and then perform the standard lifting
2142 // proceses.
2143 self.stack.push(addr.clone());
2144 self.emit(&Instruction::PointerLoad { offset });
2145 self.stack.push(addr);
2146 self.emit(&Instruction::LengthLoad {
2147 offset: offset + self.bindgen.sizes().align(ty).into(),
2148 });
2149 self.lift(ty);
2150 }
2151
2152 fn read_fields_from_memory<'b>(
2153 &mut self,
2154 tys: impl IntoIterator<Item = &'b Type>,
2155 addr: B::Operand,
2156 offset: ArchitectureSize,
2157 ) {
2158 for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys).iter() {
2159 self.read_from_memory(ty, addr.clone(), offset + (*field_offset));
2160 }
2161 }
2162
2163 fn emit_and_lift(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
2164 self.stack.push(addr);
2165 self.emit(instr);
2166 self.lift(ty);
2167 }
2168
2169 fn load_intrepr(&mut self, offset: ArchitectureSize, repr: Int) {
2170 self.emit(&match repr {
2171 Int::U64 => Instruction::I64Load { offset },
2172 Int::U32 => Instruction::I32Load { offset },
2173 Int::U16 => Instruction::I32Load16U { offset },
2174 Int::U8 => Instruction::I32Load8U { offset },
2175 });
2176 }
2177
2178 fn store_intrepr(&mut self, offset: ArchitectureSize, repr: Int) {
2179 self.emit(&match repr {
2180 Int::U64 => Instruction::I64Store { offset },
2181 Int::U32 => Instruction::I32Store { offset },
2182 Int::U16 => Instruction::I32Store16 { offset },
2183 Int::U8 => Instruction::I32Store8 { offset },
2184 });
2185 }
2186
2187 /// Runs the deallocation of `ty` for the operands currently on
2188 /// `self.stack`.
2189 ///
2190 /// This will pop the ABI items of `ty` from `self.stack`.
2191 fn deallocate(&mut self, ty: &Type, what: Deallocate) {
2192 use Instruction::*;
2193
2194 match *ty {
2195 Type::String => {
2196 self.emit(&Instruction::GuestDeallocateString);
2197 }
2198
2199 Type::Bool
2200 | Type::U8
2201 | Type::S8
2202 | Type::U16
2203 | Type::S16
2204 | Type::U32
2205 | Type::S32
2206 | Type::Char
2207 | Type::U64
2208 | Type::S64
2209 | Type::F32
2210 | Type::F64
2211 | Type::ErrorContext => {
2212 // No deallocation necessary, just discard the operand on the
2213 // stack.
2214 self.stack.pop().unwrap();
2215 }
2216
2217 Type::Id(id) => match &self.resolve.types[id].kind {
2218 TypeDefKind::Type(t) => self.deallocate(t, what),
2219
2220 TypeDefKind::List(element) => {
2221 self.push_block();
2222 self.emit(&IterBasePointer);
2223 let elemaddr = self.stack.pop().unwrap();
2224 self.deallocate_indirect(element, elemaddr, Default::default(), what);
2225 self.finish_block(0);
2226
2227 self.emit(&Instruction::GuestDeallocateList { element });
2228 }
2229
2230 TypeDefKind::Handle(Handle::Own(_))
2231 | TypeDefKind::Future(_)
2232 | TypeDefKind::Stream(_)
2233 if what.handles() =>
2234 {
2235 self.lift(ty);
2236 self.emit(&DropHandle { ty });
2237 }
2238
2239 TypeDefKind::Record(record) => {
2240 self.flat_for_each_record_type(
2241 ty,
2242 record.fields.iter().map(|f| &f.ty),
2243 |me, ty| me.deallocate(ty, what),
2244 );
2245 }
2246
2247 TypeDefKind::Tuple(tuple) => {
2248 self.flat_for_each_record_type(ty, tuple.types.iter(), |me, ty| {
2249 me.deallocate(ty, what)
2250 });
2251 }
2252
2253 TypeDefKind::Variant(variant) => {
2254 self.flat_for_each_variant_arm(
2255 ty,
2256 false,
2257 variant.cases.iter().map(|c| c.ty.as_ref()),
2258 |me, ty| me.deallocate(ty, what),
2259 );
2260 self.emit(&GuestDeallocateVariant {
2261 blocks: variant.cases.len(),
2262 });
2263 }
2264
2265 TypeDefKind::Option(t) => {
2266 self.flat_for_each_variant_arm(ty, false, [None, Some(t)], |me, ty| {
2267 me.deallocate(ty, what)
2268 });
2269 self.emit(&GuestDeallocateVariant { blocks: 2 });
2270 }
2271
2272 TypeDefKind::Result(e) => {
2273 self.flat_for_each_variant_arm(
2274 ty,
2275 false,
2276 [e.ok.as_ref(), e.err.as_ref()],
2277 |me, ty| me.deallocate(ty, what),
2278 );
2279 self.emit(&GuestDeallocateVariant { blocks: 2 });
2280 }
2281
2282 // discard the operand on the stack, otherwise nothing to free.
2283 TypeDefKind::Flags(_)
2284 | TypeDefKind::Enum(_)
2285 | TypeDefKind::Future(_)
2286 | TypeDefKind::Stream(_)
2287 | TypeDefKind::Handle(Handle::Own(_))
2288 | TypeDefKind::Handle(Handle::Borrow(_)) => {
2289 self.stack.pop().unwrap();
2290 }
2291
2292 TypeDefKind::Resource => unreachable!(),
2293 TypeDefKind::Unknown => unreachable!(),
2294
2295 TypeDefKind::FixedSizeList(..) => todo!(),
2296 },
2297 }
2298 }
2299
2300 fn deallocate_indirect(
2301 &mut self,
2302 ty: &Type,
2303 addr: B::Operand,
2304 offset: ArchitectureSize,
2305 what: Deallocate,
2306 ) {
2307 use Instruction::*;
2308
2309 // No need to execute any instructions if this type itself doesn't
2310 // require any form of post-return.
2311 if !needs_deallocate(self.resolve, ty, what) {
2312 return;
2313 }
2314
2315 match *ty {
2316 Type::String => {
2317 self.stack.push(addr.clone());
2318 self.emit(&Instruction::PointerLoad { offset });
2319 self.stack.push(addr);
2320 self.emit(&Instruction::LengthLoad {
2321 offset: offset + self.bindgen.sizes().align(ty).into(),
2322 });
2323 self.deallocate(ty, what);
2324 }
2325
2326 Type::Bool
2327 | Type::U8
2328 | Type::S8
2329 | Type::U16
2330 | Type::S16
2331 | Type::U32
2332 | Type::S32
2333 | Type::Char
2334 | Type::U64
2335 | Type::S64
2336 | Type::F32
2337 | Type::F64
2338 | Type::ErrorContext => {}
2339
2340 Type::Id(id) => match &self.resolve.types[id].kind {
2341 TypeDefKind::Type(t) => self.deallocate_indirect(t, addr, offset, what),
2342
2343 TypeDefKind::List(_) => {
2344 self.stack.push(addr.clone());
2345 self.emit(&Instruction::PointerLoad { offset });
2346 self.stack.push(addr);
2347 self.emit(&Instruction::LengthLoad {
2348 offset: offset + self.bindgen.sizes().align(ty).into(),
2349 });
2350
2351 self.deallocate(ty, what);
2352 }
2353
2354 TypeDefKind::Handle(Handle::Own(_))
2355 | TypeDefKind::Future(_)
2356 | TypeDefKind::Stream(_)
2357 if what.handles() =>
2358 {
2359 self.read_from_memory(ty, addr, offset);
2360 self.emit(&DropHandle { ty });
2361 }
2362
2363 TypeDefKind::Handle(Handle::Own(_)) => unreachable!(),
2364 TypeDefKind::Handle(Handle::Borrow(_)) => unreachable!(),
2365 TypeDefKind::Resource => unreachable!(),
2366
2367 TypeDefKind::Record(record) => {
2368 self.deallocate_indirect_fields(
2369 &record.fields.iter().map(|f| f.ty).collect::<Vec<_>>(),
2370 addr,
2371 offset,
2372 what,
2373 );
2374 }
2375
2376 TypeDefKind::Tuple(tuple) => {
2377 self.deallocate_indirect_fields(&tuple.types, addr, offset, what);
2378 }
2379
2380 TypeDefKind::Flags(_) => {}
2381
2382 TypeDefKind::Variant(variant) => {
2383 self.deallocate_indirect_variant(
2384 offset,
2385 addr,
2386 variant.tag(),
2387 variant.cases.iter().map(|c| c.ty.as_ref()),
2388 what,
2389 );
2390 self.emit(&GuestDeallocateVariant {
2391 blocks: variant.cases.len(),
2392 });
2393 }
2394
2395 TypeDefKind::Option(t) => {
2396 self.deallocate_indirect_variant(offset, addr, Int::U8, [None, Some(t)], what);
2397 self.emit(&GuestDeallocateVariant { blocks: 2 });
2398 }
2399
2400 TypeDefKind::Result(e) => {
2401 self.deallocate_indirect_variant(
2402 offset,
2403 addr,
2404 Int::U8,
2405 [e.ok.as_ref(), e.err.as_ref()],
2406 what,
2407 );
2408 self.emit(&GuestDeallocateVariant { blocks: 2 });
2409 }
2410
2411 TypeDefKind::Enum(_) => {}
2412
2413 TypeDefKind::Future(_) => unreachable!(),
2414 TypeDefKind::Stream(_) => unreachable!(),
2415 TypeDefKind::Unknown => unreachable!(),
2416 TypeDefKind::FixedSizeList(..) => todo!(),
2417 },
2418 }
2419 }
2420
2421 fn deallocate_indirect_variant<'b>(
2422 &mut self,
2423 offset: ArchitectureSize,
2424 addr: B::Operand,
2425 tag: Int,
2426 cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
2427 what: Deallocate,
2428 ) {
2429 self.stack.push(addr.clone());
2430 self.load_intrepr(offset, tag);
2431 let payload_offset = offset + (self.bindgen.sizes().payload_offset(tag, cases.clone()));
2432 for ty in cases {
2433 self.push_block();
2434 if let Some(ty) = ty {
2435 self.deallocate_indirect(ty, addr.clone(), payload_offset, what);
2436 }
2437 self.finish_block(0);
2438 }
2439 }
2440
2441 fn deallocate_indirect_fields(
2442 &mut self,
2443 tys: &[Type],
2444 addr: B::Operand,
2445 offset: ArchitectureSize,
2446 what: Deallocate,
2447 ) {
2448 for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys) {
2449 self.deallocate_indirect(ty, addr.clone(), offset + (field_offset), what);
2450 }
2451 }
2452}
2453
2454fn cast(from: WasmType, to: WasmType) -> Bitcast {
2455 use WasmType::*;
2456
2457 match (from, to) {
2458 (I32, I32)
2459 | (I64, I64)
2460 | (F32, F32)
2461 | (F64, F64)
2462 | (Pointer, Pointer)
2463 | (PointerOrI64, PointerOrI64)
2464 | (Length, Length) => Bitcast::None,
2465
2466 (I32, I64) => Bitcast::I32ToI64,
2467 (F32, I32) => Bitcast::F32ToI32,
2468 (F64, I64) => Bitcast::F64ToI64,
2469
2470 (I64, I32) => Bitcast::I64ToI32,
2471 (I32, F32) => Bitcast::I32ToF32,
2472 (I64, F64) => Bitcast::I64ToF64,
2473
2474 (F32, I64) => Bitcast::F32ToI64,
2475 (I64, F32) => Bitcast::I64ToF32,
2476
2477 (I64, PointerOrI64) => Bitcast::I64ToP64,
2478 (Pointer, PointerOrI64) => Bitcast::PToP64,
2479 (_, PointerOrI64) => {
2480 Bitcast::Sequence(Box::new([cast(from, I64), cast(I64, PointerOrI64)]))
2481 }
2482
2483 (PointerOrI64, I64) => Bitcast::P64ToI64,
2484 (PointerOrI64, Pointer) => Bitcast::P64ToP,
2485 (PointerOrI64, _) => Bitcast::Sequence(Box::new([cast(PointerOrI64, I64), cast(I64, to)])),
2486
2487 (I32, Pointer) => Bitcast::I32ToP,
2488 (Pointer, I32) => Bitcast::PToI32,
2489 (I32, Length) => Bitcast::I32ToL,
2490 (Length, I32) => Bitcast::LToI32,
2491 (I64, Length) => Bitcast::I64ToL,
2492 (Length, I64) => Bitcast::LToI64,
2493 (Pointer, Length) => Bitcast::PToL,
2494 (Length, Pointer) => Bitcast::LToP,
2495
2496 (F32, Pointer | Length) => Bitcast::Sequence(Box::new([cast(F32, I32), cast(I32, to)])),
2497 (Pointer | Length, F32) => Bitcast::Sequence(Box::new([cast(from, I32), cast(I32, F32)])),
2498
2499 (F32, F64)
2500 | (F64, F32)
2501 | (F64, I32)
2502 | (I32, F64)
2503 | (Pointer | Length, I64 | F64)
2504 | (I64 | F64, Pointer | Length) => {
2505 unreachable!("Don't know how to bitcast from {:?} to {:?}", from, to);
2506 }
2507 }
2508}
2509
2510/// Flatten types in a given type
2511///
2512/// It is sometimes necessary to restrict the number of max parameters dynamically,
2513/// for example during an async guest import call (flat params are limited to 4)
2514fn flat_types(resolve: &Resolve, ty: &Type, max_params: Option<usize>) -> Option<Vec<WasmType>> {
2515 let max_params = max_params.unwrap_or(MAX_FLAT_PARAMS);
2516 let mut storage = iter::repeat_n(WasmType::I32, max_params).collect::<Vec<_>>();
2517 let mut flat = FlatTypes::new(storage.as_mut_slice());
2518 resolve.push_flat(ty, &mut flat).then_some(flat.to_vec())
2519}