1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use crate::StarkDomain;
use core::{iter::FusedIterator, slice};
use crypto::{ElementHasher, MerkleTree};
use math::{fft, polynom, FieldElement};
use utils::{batch_iter_mut, collections::*, iter, iter_mut, uninit_vector};

#[cfg(feature = "concurrent")]
use utils::iterators::*;

// COLUMN-MAJOR MATRIX
// ================================================================================================

/// A two-dimensional matrix of field elements arranged in column-major order.
///
/// This struct is used as a backing type for many objects manipulated by the prover. The matrix
/// itself does not assign any contextual meaning to the values stored in it. For example, columns
/// may contain evaluations of polynomials, or polynomial coefficients, or really anything else.
/// However, the matrix does expose a number of methods which make assumptions about the underlying
/// data.
///
/// A matrix imposes the following restrictions on its content:
/// - A matrix must consist of at least 1 column and at least 2 rows.
/// - All columns must be of the same length.
/// - Number of rows must be a power of two.
#[derive(Debug, Clone)]
pub struct ColMatrix<E: FieldElement> {
    columns: Vec<Vec<E>>,
}

impl<E: FieldElement> ColMatrix<E> {
    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new [Matrix] instantiated with the data from the specified columns.
    ///
    /// # Panics
    /// Panics if:
    /// * The provided vector of columns is empty.
    /// * Not all of the columns have the same number of elements.
    /// * Number of rows is smaller than or equal to 1.
    /// * Number of rows is not a power of two.
    pub fn new(columns: Vec<Vec<E>>) -> Self {
        assert!(!columns.is_empty(), "a matrix must contain at least one column");
        let num_rows = columns[0].len();
        assert!(num_rows > 1, "number of rows in a matrix must be greater than one");
        assert!(num_rows.is_power_of_two(), "number of rows in a matrix must be a power of 2");
        for column in columns.iter().skip(1) {
            assert_eq!(column.len(), num_rows, "all matrix columns must have the same length");
        }

        Self { columns }
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns the number of columns in this matrix.
    pub fn num_cols(&self) -> usize {
        self.columns.len()
    }

    /// Returns the number of base field columns in this matrix.
    ///
    /// The number of base field columns is defined as the number of columns multiplied by the
    /// extension degree of field elements contained in this matrix.
    pub fn num_base_cols(&self) -> usize {
        self.num_cols() * E::EXTENSION_DEGREE
    }

    /// Returns the number of rows in this matrix.
    pub fn num_rows(&self) -> usize {
        self.columns[0].len()
    }

    /// Returns the element located at the specified column and row indexes in this matrix.
    ///
    /// # Panics
    /// Panics if either `col_idx` or `row_idx` are out of bounds for this matrix.
    pub fn get(&self, col_idx: usize, row_idx: usize) -> E {
        self.columns[col_idx][row_idx]
    }

    /// Returns base field elements located at the specified column and row indexes in this matrix.
    ///
    /// For STARK fields, `base_col_idx` is the same as `col_idx` used in `Self::get` method. For
    /// extension fields, each column in the matrix is viewed as 2 or more columns in the base
    /// field.
    ///
    /// Thus, for example, if we are in a degree 2 extension field, `base_col_idx = 0` would refer
    /// to the first base element of the first column, `base_col_idx = 1` would refer to the second
    /// base element of the first column, `base_col_idx = 2` would refer to the first base element
    /// of the second column etc.
    ///
    /// # Panics
    /// Panics if either `base_col_idx` or `row_idx` are out of bounds for this matrix.
    pub fn get_base_element(&self, base_col_idx: usize, row_idx: usize) -> E::BaseField {
        let (col_idx, elem_idx) =
            (base_col_idx / E::EXTENSION_DEGREE, base_col_idx % E::EXTENSION_DEGREE);
        self.columns[col_idx][row_idx].base_element(elem_idx)
    }

    /// Set the cell in this matrix at the specified column and row indexes to the provided value.
    ///
    /// # Panics
    /// Panics if either `col_idx` or `row_idx` are out of bounds for this matrix.
    pub fn set(&mut self, col_idx: usize, row_idx: usize, value: E) {
        self.columns[col_idx][row_idx] = value;
    }

    /// Returns a reference to the column at the specified index.
    pub fn get_column(&self, col_idx: usize) -> &[E] {
        &self.columns[col_idx]
    }

    /// Returns a reference to the column at the specified index.
    pub fn get_column_mut(&mut self, col_idx: usize) -> &mut [E] {
        &mut self.columns[col_idx]
    }

    /// Copies values of all columns at the specified row into the specified row slice.
    ///
    /// # Panics
    /// Panics if `row_idx` is out of bounds for this matrix.
    pub fn read_row_into(&self, row_idx: usize, row: &mut [E]) {
        for (column, value) in self.columns.iter().zip(row.iter_mut()) {
            *value = column[row_idx];
        }
    }

    /// Updates a row in this matrix at the specified index to the provided data.
    ///
    /// # Panics
    /// Panics if `row_idx` is out of bounds for this matrix.
    pub fn update_row(&mut self, row_idx: usize, row: &[E]) {
        for (column, &value) in self.columns.iter_mut().zip(row) {
            column[row_idx] = value;
        }
    }

    /// Merges a column to the end of the matrix provided its length matches the matrix.
    ///
    /// # Panics
    /// Panics if the column has a different length to other columns in the matrix.
    pub fn merge_column(&mut self, column: Vec<E>) {
        if let Some(first_column) = self.columns.first() {
            assert_eq!(first_column.len(), column.len());
        }
        self.columns.push(column);
    }

    // ITERATION
    // --------------------------------------------------------------------------------------------

    /// Returns an iterator over the columns of this matrix.
    pub fn columns(&self) -> ColumnIter<E> {
        ColumnIter::new(self)
    }

    /// Returns a mutable iterator over the columns of this matrix.
    pub fn columns_mut(&mut self) -> ColumnIterMut<E> {
        ColumnIterMut::new(self)
    }

    // POLYNOMIAL METHODS
    // --------------------------------------------------------------------------------------------

    /// Interpolates columns of the matrix into polynomials in coefficient form and returns the
    /// result.
    ///
    /// The interpolation is performed as follows:
    /// * Each column of the matrix is interpreted as evaluations of degree `num_rows - 1`
    ///   polynomial over a subgroup of size `num_rows`.
    /// * Then each column is interpolated using iFFT algorithm into a polynomial in coefficient
    ///   form.
    /// * The resulting polynomials are returned as a single matrix where each column contains
    ///   coefficients of a degree `num_rows - 1` polynomial.
    pub fn interpolate_columns(&self) -> Self {
        let inv_twiddles = fft::get_inv_twiddles::<E::BaseField>(self.num_rows());
        let columns = iter!(self.columns)
            .map(|evaluations| {
                let mut column = evaluations.clone();
                fft::interpolate_poly(&mut column, &inv_twiddles);
                column
            })
            .collect();
        Self { columns }
    }

    /// Interpolates columns of the matrix into polynomials in coefficient form and returns the
    /// result. The input matrix is consumed in the process.
    ///
    /// The interpolation is performed as follows:
    /// * Each column of the matrix is interpreted as evaluations of degree `num_rows - 1`
    ///   polynomial over a subgroup of size `num_rows`.
    /// * Then each column is interpolated (in place) using iFFT algorithm into a polynomial in
    ///   coefficient form.
    /// * The resulting polynomials are returned as a single matrix where each column contains
    ///   coefficients of a degree `num_rows - 1` polynomial.
    pub fn interpolate_columns_into(mut self) -> Self {
        let inv_twiddles = fft::get_inv_twiddles::<E::BaseField>(self.num_rows());
        iter_mut!(self.columns).for_each(|column| fft::interpolate_poly(column, &inv_twiddles));
        self
    }

    /// Evaluates polynomials contained in the columns of this matrix over the specified domain
    /// and returns the result.
    ///
    /// The evaluation is done as follows:
    /// * Each column of the matrix is interpreted as coefficients of degree `num_rows - 1`
    ///   polynomial.
    /// * These polynomials are evaluated over the LDE domain defined by the specified
    ///   [StarkDomain] using FFT algorithm. The domain specification includes the size of the
    ///   subgroup as well as the domain offset (to define a coset).
    /// * The resulting evaluations are returned in a new Matrix.
    pub fn evaluate_columns_over(&self, domain: &StarkDomain<E::BaseField>) -> Self {
        let columns = iter!(self.columns)
            .map(|poly| {
                fft::evaluate_poly_with_offset(
                    poly,
                    domain.trace_twiddles(),
                    domain.offset(),
                    domain.trace_to_lde_blowup(),
                )
            })
            .collect();
        Self { columns }
    }

    /// Evaluates polynomials contained in the columns of this matrix at a single point `x`.
    pub fn evaluate_columns_at<F>(&self, x: F) -> Vec<F>
    where
        F: FieldElement + From<E>,
    {
        iter!(self.columns).map(|p| polynom::eval(p, x)).collect()
    }

    // COMMITMENTS
    // --------------------------------------------------------------------------------------------

    /// Returns a commitment to this matrix.
    ///
    /// The commitment is built as follows:
    /// * Each row of the matrix is hashed into a single digest of the specified hash function.
    /// * The resulting values are used to built a binary Merkle tree such that each row digest
    ///   becomes a leaf in the tree. Thus, the number of leaves in the tree is equal to the
    ///   number of rows in the matrix.
    /// * The resulting Merkle tree is return as the commitment to the entire matrix.
    pub fn commit_to_rows<H>(&self) -> MerkleTree<H>
    where
        H: ElementHasher<BaseField = E::BaseField>,
    {
        // allocate vector to store row hashes
        let mut row_hashes = unsafe { uninit_vector::<H::Digest>(self.num_rows()) };

        // iterate though matrix rows, hashing each row; the hashing is done by first copying a
        // row into row_buf to avoid heap allocations, and then by applying the hash function to
        // the buffer.
        batch_iter_mut!(
            &mut row_hashes,
            128, // min batch size
            |batch: &mut [H::Digest], batch_offset: usize| {
                let mut row_buf = vec![E::ZERO; self.num_cols()];
                for (i, row_hash) in batch.iter_mut().enumerate() {
                    self.read_row_into(i + batch_offset, &mut row_buf);
                    *row_hash = H::hash_elements(&row_buf);
                }
            }
        );

        // build Merkle tree out of hashed rows
        MerkleTree::new(row_hashes).expect("failed to construct trace Merkle tree")
    }

    // CONVERSIONS
    // --------------------------------------------------------------------------------------------

    /// Returns the columns of this matrix as a list of vectors.
    ///
    /// TODO: replace this with an iterator.
    pub fn into_columns(self) -> Vec<Vec<E>> {
        self.columns
    }
}

// COLUMN ITERATOR
// ================================================================================================

/// Iterator over columns of [ColMatrix].
pub struct ColumnIter<'a, E: FieldElement> {
    matrix: &'a ColMatrix<E>,
    cursor: usize,
}

impl<'a, E: FieldElement> ColumnIter<'a, E> {
    pub fn new(matrix: &'a ColMatrix<E>) -> Self {
        Self { matrix, cursor: 0 }
    }
}

impl<'a, E: FieldElement> Iterator for ColumnIter<'a, E> {
    type Item = &'a [E];

    fn next(&mut self) -> Option<Self::Item> {
        match self.matrix.num_cols() - self.cursor {
            0 => None,
            _ => {
                let column = self.matrix.get_column(self.cursor);
                self.cursor += 1;
                Some(column)
            }
        }
    }
}

impl<'a, E: FieldElement> ExactSizeIterator for ColumnIter<'a, E> {
    fn len(&self) -> usize {
        self.matrix.num_cols()
    }
}

impl<'a, E: FieldElement> FusedIterator for ColumnIter<'a, E> {}

// MUTABLE COLUMN ITERATOR
// ================================================================================================

/// Iterator over mutable columns of [ColMatrix].
pub struct ColumnIterMut<'a, E: FieldElement> {
    matrix: &'a mut ColMatrix<E>,
    cursor: usize,
}

impl<'a, E: FieldElement> ColumnIterMut<'a, E> {
    pub fn new(matrix: &'a mut ColMatrix<E>) -> Self {
        Self { matrix, cursor: 0 }
    }
}

impl<'a, E: FieldElement> Iterator for ColumnIterMut<'a, E> {
    type Item = &'a mut [E];

    fn next(&mut self) -> Option<Self::Item> {
        match self.matrix.num_cols() - self.cursor {
            0 => None,
            _ => {
                let column = self.matrix.get_column_mut(self.cursor);
                self.cursor += 1;

                // this is needed to get around mutable iterator lifetime issues; this is safe
                // because the iterator can never yield a reference to the same column twice
                let p = column.as_ptr();
                let len = column.len();
                Some(unsafe { slice::from_raw_parts_mut(p as *mut E, len) })
            }
        }
    }
}

impl<'a, E: FieldElement> ExactSizeIterator for ColumnIterMut<'a, E> {
    fn len(&self) -> usize {
        self.matrix.num_cols()
    }
}

impl<'a, E: FieldElement> FusedIterator for ColumnIterMut<'a, E> {}

// MULTI-MATRIX COLUMN ITERATOR
// ================================================================================================

/// Iterator over columns several [ColMatrix]'s.
pub struct MultiColumnIter<'a, E: FieldElement> {
    matrixes: &'a [ColMatrix<E>],
    m_cursor: usize,
    c_cursor: usize,
}

impl<'a, E: FieldElement> MultiColumnIter<'a, E> {
    pub fn new(matrixes: &'a [ColMatrix<E>]) -> Self {
        // make sure all matrixes have the same number of rows
        if !matrixes.is_empty() {
            let num_rows = matrixes[0].num_rows();
            for matrix in matrixes.iter().skip(1) {
                assert_eq!(
                    matrix.num_rows(),
                    num_rows,
                    "all matrixes must have the same number of rows"
                );
            }
        }

        Self {
            matrixes,
            m_cursor: 0,
            c_cursor: 0,
        }
    }
}

impl<'a, E: FieldElement> Iterator for MultiColumnIter<'a, E> {
    type Item = &'a [E];

    fn next(&mut self) -> Option<Self::Item> {
        if self.matrixes.is_empty() {
            return None;
        }
        let matrix = &self.matrixes[self.m_cursor];
        match matrix.num_cols() - self.c_cursor {
            0 => None,
            _ => {
                let column = matrix.get_column(self.c_cursor);
                self.c_cursor += 1;
                if self.c_cursor == matrix.num_cols() && self.m_cursor < self.matrixes.len() - 1 {
                    self.m_cursor += 1;
                    self.c_cursor = 0;
                }
                Some(column)
            }
        }
    }
}

impl<'a, E: FieldElement> ExactSizeIterator for MultiColumnIter<'a, E> {
    fn len(&self) -> usize {
        self.matrixes.iter().fold(0, |s, m| s + m.num_cols())
    }
}

impl<'a, E: FieldElement> FusedIterator for MultiColumnIter<'a, E> {}