1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use super::{matrix::MultiColumnIter, ColMatrix};
use air::{Air, AuxTraceRandElements, EvaluationFrame, TraceInfo, TraceLayout};
use math::{polynom, FieldElement, StarkField};

mod trace_lde;
pub use trace_lde::{DefaultTraceLde, TraceLde};

mod poly_table;
pub use poly_table::TracePolyTable;

mod trace_table;
pub use trace_table::{TraceTable, TraceTableFragment};

#[cfg(test)]
mod tests;

// TRACE TRAIT
// ================================================================================================
/// Defines an execution trace of a computation.
///
/// Execution trace can be reduced to a two-dimensional matrix in which each row represents the
/// state of a computation at a single point in time and each column corresponds to an algebraic
/// column tracked over all steps of the computation.
///
/// Building a trace is required for STARK proof generation. An execution trace of a specific
/// instance of a computation must be supplied to [Prover::prove()](super::Prover::prove) method
/// to generate a STARK proof.
///
/// This crate exposes one concrete implementation of the [Trace] trait: [TraceTable]. This
/// implementation supports concurrent trace generation and should be sufficient in most
/// situations. However, if functionality provided by [TraceTable] is not sufficient, uses can
/// provide custom implementations of the [Trace] trait which better suit their needs.
pub trait Trace: Sized {
    /// Base field for this execution trace.
    ///
    /// All cells of this execution trace contain values which are elements in this field.
    type BaseField: StarkField;

    // REQUIRED METHODS
    // --------------------------------------------------------------------------------------------

    /// Returns a description of how columns of this trace are arranged into trace segments.
    fn layout(&self) -> &TraceLayout;

    /// Returns the number of rows in this trace.
    fn length(&self) -> usize;

    /// Returns metadata associated with this trace.
    fn meta(&self) -> &[u8];

    /// Returns a reference to a [Matrix] describing the main segment of this trace.
    fn main_segment(&self) -> &ColMatrix<Self::BaseField>;

    /// Builds and returns the next auxiliary trace segment. If there are no more segments to
    /// build (i.e., the trace is complete), None is returned.
    ///
    /// The `aux_segments` slice contains a list of auxiliary trace segments built as a result
    /// of prior invocations of this function. Thus, for example, on the first invocation,
    /// `aux_segments` will be empty; on the second invocation, it will contain a single matrix
    /// (the one built during the first invocation) etc.
    fn build_aux_segment<E: FieldElement<BaseField = Self::BaseField>>(
        &mut self,
        aux_segments: &[ColMatrix<E>],
        rand_elements: &[E],
    ) -> Option<ColMatrix<E>>;

    /// Reads an evaluation frame from the main trace segment at the specified row.
    fn read_main_frame(&self, row_idx: usize, frame: &mut EvaluationFrame<Self::BaseField>);

    // PROVIDED METHODS
    // --------------------------------------------------------------------------------------------

    /// Returns trace info for this trace.
    fn get_info(&self) -> TraceInfo {
        TraceInfo::new_multi_segment(self.layout().clone(), self.length(), self.meta().to_vec())
    }

    /// Returns the number of columns in the main segment of this trace.
    fn main_trace_width(&self) -> usize {
        self.layout().main_trace_width()
    }

    /// Returns the number of columns in all auxiliary trace segments.
    fn aux_trace_width(&self) -> usize {
        self.layout().aux_trace_width()
    }

    // VALIDATION
    // --------------------------------------------------------------------------------------------
    /// Checks if this trace is valid against the specified AIR, and panics if not.
    ///
    /// NOTE: this is a very expensive operation and is intended for use only in debug mode.
    fn validate<A, E>(
        &self,
        air: &A,
        aux_segments: &[ColMatrix<E>],
        aux_rand_elements: &AuxTraceRandElements<E>,
    ) where
        A: Air<BaseField = Self::BaseField>,
        E: FieldElement<BaseField = Self::BaseField>,
    {
        // make sure the width align; if they don't something went terribly wrong
        assert_eq!(
            self.main_trace_width(),
            air.trace_layout().main_trace_width(),
            "inconsistent trace width: expected {}, but was {}",
            self.main_trace_width(),
            air.trace_layout().main_trace_width(),
        );

        // --- 1. make sure the assertions are valid ----------------------------------------------

        // first, check assertions against the main segment of the execution trace
        for assertion in air.get_assertions() {
            assertion.apply(self.length(), |step, value| {
                assert!(
                    value == self.main_segment().get(assertion.column(), step),
                    "trace does not satisfy assertion main_trace({}, {}) == {}",
                    assertion.column(),
                    step,
                    value
                );
            });
        }

        // then, check assertions against auxiliary trace segments
        for assertion in air.get_aux_assertions(aux_rand_elements) {
            // find which segment the assertion is for and remap assertion column index to the
            // column index in the context of this segment
            let mut column_idx = assertion.column();
            let mut segment_idx = 0;
            for i in 0..self.layout().num_aux_segments() {
                let segment_width = self.layout().get_aux_segment_width(i);
                if column_idx < segment_width {
                    segment_idx = i;
                    break;
                }
                column_idx -= segment_width;
            }

            // get the matrix and verify the assertion against it
            assertion.apply(self.length(), |step, value| {
                assert!(
                    value == aux_segments[segment_idx].get(column_idx, step),
                    "trace does not satisfy assertion aux_trace({}, {}) == {}",
                    assertion.column(),
                    step,
                    value
                );
            });
        }

        // --- 2. make sure this trace satisfies all transition constraints -----------------------

        // collect the info needed to build periodic values for a specific step
        let g = air.trace_domain_generator();
        let periodic_values_polys = air.get_periodic_column_polys();
        let mut periodic_values = vec![Self::BaseField::ZERO; periodic_values_polys.len()];

        // initialize buffers to hold evaluation frames and results of constraint evaluations
        let mut x = Self::BaseField::ONE;
        let mut main_frame = EvaluationFrame::new(self.main_trace_width());
        let mut aux_frame = if air.trace_info().is_multi_segment() {
            Some(EvaluationFrame::<E>::new(self.aux_trace_width()))
        } else {
            None
        };
        let mut main_evaluations =
            vec![Self::BaseField::ZERO; air.context().num_main_transition_constraints()];
        let mut aux_evaluations = vec![E::ZERO; air.context().num_aux_transition_constraints()];

        // we check transition constraints on all steps except the last k steps, where k is the
        // number of steps exempt from transition constraints (guaranteed to be at least 1)
        for step in 0..self.length() - air.context().num_transition_exemptions() {
            // build periodic values
            for (p, v) in periodic_values_polys.iter().zip(periodic_values.iter_mut()) {
                let num_cycles = air.trace_length() / p.len();
                let x = x.exp((num_cycles as u32).into());
                *v = polynom::eval(p, x);
            }

            // evaluate transition constraints for the main trace segment and make sure they all
            // evaluate to zeros
            self.read_main_frame(step, &mut main_frame);
            air.evaluate_transition(&main_frame, &periodic_values, &mut main_evaluations);
            for (i, &evaluation) in main_evaluations.iter().enumerate() {
                assert!(
                    evaluation == Self::BaseField::ZERO,
                    "main transition constraint {i} did not evaluate to ZERO at step {step}"
                );
            }

            // evaluate transition constraints for auxiliary trace segments (if any) and make
            // sure they all evaluate to zeros
            if let Some(ref mut aux_frame) = aux_frame {
                read_aux_frame(aux_segments, step, aux_frame);
                air.evaluate_aux_transition(
                    &main_frame,
                    aux_frame,
                    &periodic_values,
                    aux_rand_elements,
                    &mut aux_evaluations,
                );
                for (i, &evaluation) in aux_evaluations.iter().enumerate() {
                    assert!(
                        evaluation == E::ZERO,
                        "auxiliary transition constraint {i} did not evaluate to ZERO at step {step}"
                    );
                }
            }

            // update x coordinate of the domain
            x *= g;
        }
    }
}

// HELPER FUNCTIONS
// ================================================================================================

/// Reads an evaluation frame from the set of provided auxiliary segments. This expects that
/// `aux_segments` contains at least one entry.
///
/// This is probably not the most efficient implementation, but since we call this function only
/// for trace validation purposes (which is done in debug mode only), we don't care all that much
/// about its performance.
fn read_aux_frame<E>(aux_segments: &[ColMatrix<E>], row_idx: usize, frame: &mut EvaluationFrame<E>)
where
    E: FieldElement,
{
    for (column, current_value) in MultiColumnIter::new(aux_segments).zip(frame.current_mut()) {
        *current_value = column[row_idx];
    }

    let next_row_idx = (row_idx + 1) % aux_segments[0].num_rows();
    for (column, next_value) in MultiColumnIter::new(aux_segments).zip(frame.next_mut()) {
        *next_value = column[next_row_idx];
    }
}