1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use super::{ColMatrix, Segment};
use crate::StarkDomain;
use crypto::{ElementHasher, MerkleTree};
use math::{fft, log2, FieldElement, StarkField};
use utils::collections::Vec;
use utils::{batch_iter_mut, flatten_vector_elements, uninit_vector};
#[cfg(feature = "concurrent")]
use utils::iterators::*;
// ROW-MAJOR MATRIX
// ================================================================================================
/// A two-dimensional matrix of field elements arranged in row-major order.
///
/// The matrix is represented as a single vector of base field elements for the field defined by E
/// type parameter. The first `row_width` base field elements represent the first row of the matrix,
/// the next `row_width` base field elements represent the second row, and so on.
///
/// When rows are returned via the [RowMatrix::row()] method, base field elements are grouped
/// together as appropriate to form elements in E.
///
/// In some cases, rows may be padded with extra elements. The number of elements which are
/// accessible via the [RowMatrix::row()] method is specified by the `elements_per_row` member.
#[derive(Clone, Debug)]
pub struct RowMatrix<E: FieldElement> {
/// Field elements stored in the matrix.
data: Vec<E::BaseField>,
/// Total number of base field elements stored in a single row.
row_width: usize,
/// Number of field elements in a single row accessible via the [RowMatrix::row()] method. This
/// must be equal to or smaller than `row_width`.
elements_per_row: usize,
}
impl<E: FieldElement> RowMatrix<E> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new [RowMatrix] constructed by evaluating the provided polynomials over the
/// domain defined by the specified blowup factor.
///
/// The provided `polys` matrix is assumed to contain polynomials in coefficient form (one
/// polynomial per column). Columns in the returned matrix will contain evaluations of the
/// corresponding polynomials over the domain defined by polynomial size (i.e., number of rows
/// in the `polys` matrix) and the `blowup_factor`.
///
/// To improve performance, polynomials are evaluated in batches specified by the `N` type
/// parameter. Minimum batch size is 1.
pub fn evaluate_polys<const N: usize>(polys: &ColMatrix<E>, blowup_factor: usize) -> Self {
assert!(N > 0, "batch size N must be greater than zero");
// pre-compute offsets for each row
let poly_size = polys.num_rows();
let offsets = get_offsets::<E>(poly_size, blowup_factor, E::BaseField::GENERATOR);
// compute twiddles for polynomial evaluation
let twiddles = fft::get_twiddles::<E::BaseField>(polys.num_rows());
// build matrix segments by evaluating all polynomials
let segments = build_segments::<E, N>(polys, &twiddles, &offsets);
// transpose data in individual segments into a single row-major matrix
Self::from_segments(segments, polys.num_base_cols())
}
/// Returns a new [RowMatrix] constructed by evaluating the provided polynomials over the
/// specified [StarkDomain].
///
/// The provided `polys` matrix is assumed to contain polynomials in coefficient form (one
/// polynomial per column). Columns in the returned matrix will contain evaluations of the
/// corresponding polynomials over the LDE domain defined by the provided [StarkDomain].
///
/// To improve performance, polynomials are evaluated in batches specified by the `N` type
/// parameter. Minimum batch size is 1.
pub fn evaluate_polys_over<const N: usize>(
polys: &ColMatrix<E>,
domain: &StarkDomain<E::BaseField>,
) -> Self {
assert!(N > 0, "batch size N must be greater than zero");
// pre-compute offsets for each row
let poly_size = polys.num_rows();
let offsets = get_offsets::<E>(poly_size, domain.trace_to_lde_blowup(), domain.offset());
// build matrix segments by evaluating all polynomials
let segments = build_segments::<E, N>(polys, domain.trace_twiddles(), &offsets);
// transpose data in individual segments into a single row-major matrix
Self::from_segments(segments, polys.num_base_cols())
}
/// Returns a new [RowMatrix] instantiated from the specified matrix segments.
///
/// `elements_per_row` specifies how many base field elements are considered to form a single
/// row in the matrix.
///
/// # Panics
/// Panics if
/// - `segments` is an empty vector.
/// - `elements_per_row` is greater than the row width implied by the number of segments and
/// `N` type parameter.
pub fn from_segments<const N: usize>(
segments: Vec<Segment<E::BaseField, N>>,
elements_per_row: usize,
) -> Self {
assert!(N > 0, "batch size N must be greater than zero");
assert!(!segments.is_empty(), "a list of segments cannot be empty");
// compute the size of each row
let row_width = segments.len() * N;
assert!(
elements_per_row <= row_width,
"elements per row cannot exceed {row_width}, but was {elements_per_row}"
);
// transpose the segments into a single vector of arrays
let result = transpose(segments);
// flatten the result to be a simple vector of elements and return
RowMatrix {
data: flatten_vector_elements(result),
row_width,
elements_per_row,
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the number of columns in this matrix.
pub fn num_cols(&self) -> usize {
self.elements_per_row / E::EXTENSION_DEGREE
}
/// Returns the number of rows in this matrix.
pub fn num_rows(&self) -> usize {
self.data.len() / self.row_width
}
/// Returns the element located at the specified column and row indexes in this matrix.
///
/// # Panics
/// Panics if either `col_idx` or `row_idx` are out of bounds for this matrix.
pub fn get(&self, col_idx: usize, row_idx: usize) -> E {
self.row(row_idx)[col_idx]
}
/// Returns a reference to a row at the specified index in this matrix.
///
/// # Panics
/// Panics if the specified row index is out of bounds.
pub fn row(&self, row_idx: usize) -> &[E] {
assert!(row_idx < self.num_rows());
let start = row_idx * self.row_width;
E::slice_from_base_elements(&self.data[start..start + self.elements_per_row])
}
/// Returns the data in this matrix as a slice of field elements.
pub fn data(&self) -> &[E::BaseField] {
&self.data
}
// COMMITMENTS
// --------------------------------------------------------------------------------------------
/// Returns a commitment to this matrix.
///
/// The commitment is built as follows:
/// * Each row of the matrix is hashed into a single digest of the specified hash function.
/// * The resulting values are used to build a binary Merkle tree such that each row digest
/// becomes a leaf in the tree. Thus, the number of leaves in the tree is equal to the
/// number of rows in the matrix.
/// * The resulting Merkle tree is returned as the commitment to the entire matrix.
pub fn commit_to_rows<H>(&self) -> MerkleTree<H>
where
H: ElementHasher<BaseField = E::BaseField>,
{
// allocate vector to store row hashes
let mut row_hashes = unsafe { uninit_vector::<H::Digest>(self.num_rows()) };
// iterate though matrix rows, hashing each row
batch_iter_mut!(
&mut row_hashes,
128, // min batch size
|batch: &mut [H::Digest], batch_offset: usize| {
for (i, row_hash) in batch.iter_mut().enumerate() {
*row_hash = H::hash_elements(self.row(batch_offset + i));
}
}
);
// build Merkle tree out of hashed rows
MerkleTree::new(row_hashes).expect("failed to construct trace Merkle tree")
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Returns a vector of offsets for an evaluation defined by the specified polynomial size, blowup
/// factor and domain offset.
///
/// When `concurrent` feature is enabled, offsets are computed in multiple threads.
fn get_offsets<E: FieldElement>(
poly_size: usize,
blowup_factor: usize,
domain_offset: E::BaseField,
) -> Vec<E::BaseField> {
let domain_size = poly_size * blowup_factor;
let g = E::BaseField::get_root_of_unity(log2(domain_size));
// allocate memory to hold the offsets
let mut offsets = unsafe { uninit_vector(domain_size) };
// define a closure to compute offsets for a given chunk of the result; the number of chunks
// is defined by the blowup factor. for example, for blowup factor = 2, the number of chunks
// will be 2, for blowup factor = 8, the number of chunks will be 8 etc.
let compute_offsets = |(chunk_idx, chunk): (usize, &mut [E::BaseField])| {
let idx = fft::permute_index(blowup_factor, chunk_idx) as u64;
let offset = g.exp_vartime(idx.into()) * domain_offset;
let mut factor = E::BaseField::ONE;
for res in chunk.iter_mut() {
*res = factor;
factor *= offset;
}
};
// compute offsets for each chunk using either parallel or regular iterators
#[cfg(not(feature = "concurrent"))]
offsets
.chunks_mut(poly_size)
.enumerate()
.for_each(compute_offsets);
#[cfg(feature = "concurrent")]
offsets
.par_chunks_mut(poly_size)
.enumerate()
.for_each(compute_offsets);
offsets
}
/// Returns matrix segments constructed by evaluating polynomials in the specified matrix over the
/// domain defined by twiddles and offsets.
fn build_segments<E: FieldElement, const N: usize>(
polys: &ColMatrix<E>,
twiddles: &[E::BaseField],
offsets: &[E::BaseField],
) -> Vec<Segment<E::BaseField, N>> {
assert!(N > 0, "batch size N must be greater than zero");
debug_assert_eq!(polys.num_rows(), twiddles.len() * 2);
debug_assert_eq!(offsets.len() % polys.num_rows(), 0);
let num_segments = if polys.num_base_cols() % N == 0 {
polys.num_base_cols() / N
} else {
polys.num_base_cols() / N + 1
};
(0..num_segments)
.map(|i| Segment::new(polys, i * N, offsets, twiddles))
.collect()
}
/// Transposes a vector of segments into a single vector of fixed-size arrays.
///
/// When `concurrent` feature is enabled, transposition is performed in multiple threads.
fn transpose<B: StarkField, const N: usize>(mut segments: Vec<Segment<B, N>>) -> Vec<[B; N]> {
let num_rows = segments[0].num_rows();
let num_segs = segments.len();
let result_len = num_rows * num_segs;
// if there is only one segment, there is nothing to transpose as it is already in row
// major form
if segments.len() == 1 {
return segments.remove(0).into_data();
}
// allocate memory to hold the transposed result;
// TODO: investigate transposing in-place
let mut result = unsafe { uninit_vector::<[B; N]>(result_len) };
// determine number of batches in which transposition will be preformed; if `concurrent`
// feature is not enabled, the number of batches will always be 1
let num_batches = get_num_batches(result_len);
let rows_per_batch = num_rows / num_batches;
// define a closure for transposing a given batch
let transpose_batch = |(batch_idx, batch): (usize, &mut [[B; N]])| {
let row_offset = batch_idx * rows_per_batch;
for i in 0..rows_per_batch {
let row_idx = i + row_offset;
for j in 0..num_segs {
let v = &segments[j].data()[row_idx];
batch[i * num_segs + j].copy_from_slice(v);
}
}
};
// call the closure either once (for single-threaded transposition) or in a parallel
// iterator (for multi-threaded transposition)
#[cfg(not(feature = "concurrent"))]
transpose_batch((0, &mut result));
#[cfg(feature = "concurrent")]
result
.par_chunks_mut(result_len / num_batches)
.enumerate()
.for_each(transpose_batch);
result
}
#[cfg(not(feature = "concurrent"))]
fn get_num_batches(_input_size: usize) -> usize {
1
}
#[cfg(feature = "concurrent")]
fn get_num_batches(input_size: usize) -> usize {
if input_size < 1024 {
return 1;
}
utils::rayon::current_num_threads().next_power_of_two() * 2
}