1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
// Copyright (c) Facebook, Inc. and its affiliates. // // This source code is licensed under the MIT license found in the // LICENSE file in the root directory of this source tree. use super::{StarkDomain, TracePolyTable, TraceTable}; use air::{Air, EvaluationFrame, TraceInfo}; use math::{fft, log2, polynom, StarkField}; use utils::{collections::Vec, iter_mut, uninit_vector}; #[cfg(not(feature = "concurrent"))] use utils::collections::vec; #[cfg(feature = "concurrent")] use utils::{iterators::*, rayon}; // CONSTANTS // ================================================================================================ const MIN_FRAGMENT_LENGTH: usize = 2; // TRACE TABLE // ================================================================================================ /// An execution trace of a computation. /// /// Execution trace is a two-dimensional matrix in which each row represents the state of a /// computation at a single point in time and each column corresponds to an algebraic register /// tracked over all steps of the computation. /// /// There are two ways to create an execution trace. /// /// First, you can use the [ExecutionTrace::init()] function which takes a set of vectors as a /// parameter, where each vector contains values for a given column of the trace. This approach /// allows you to build an execution trace as you see fit, as long as it meets a basic set of /// requirements. These requirements are: /// /// 1. Lengths of all columns in the execution trace must be the same. /// 2. The length of the columns must be some power of two. /// /// The other approach is to use [ExecutionTrace::new()] function, which takes trace width and /// length as parameters. This function will allocate memory for the trace, but will not fill it /// with data. To fill the execution trace, you can use the [fill()](ExecutionTrace::fill) method, /// which takes two closures as parameters: /// /// 1. The first closure is responsible for initializing the first state of the computation /// (the first row of the execution trace). /// 2. The second closure receives the previous state of the execution trace as input, and must /// update it to the next state of the computation. /// /// You can also use [ExecutionTrace::with_meta()] function to create a blank execution trace. /// This function work just like [ExecutionTrace::new()] function, but also takes a metadata /// parameter which can be an arbitrary sequence of bytes up to 64KB in size. /// /// # Concurrent trace generation /// For computations which consist of many small independent computations, we can generate the /// execution trace of the entire computation by building fragments of the trace in parallel, /// and then joining these fragments together. /// /// For this purpose, `ExecutionTrace` struct exposes [fragments()](ExecutionTrace::fragments) /// method, which takes fragment length as a parameter, breaks the execution trace into equally /// sized fragments, and returns an iterator over these fragments. You can then use fragment's /// [fill()](ExecutionTraceFragment::fill) method to fill all fragments with data in parallel. /// The semantics of the fragment's [ExecutionTraceFragment::fill()] method are identical to the /// semantics of the [ExecutionTrace::fill()] method. pub struct ExecutionTrace<B: StarkField> { trace: Vec<Vec<B>>, meta: Vec<u8>, } impl<B: StarkField> ExecutionTrace<B> { // CONSTRUCTORS // -------------------------------------------------------------------------------------------- /// Creates a new execution trace of the specified width and length. /// /// This allocates all the required memory for the trace, but does not initialize it. It is /// expected that the trace will be filled using one of the data mutator methods. /// /// # Panics /// Panics if: /// * `width` is zero or greater than 255. /// * `length` is smaller than 8, greater than biggest multiplicative subgroup in the field /// `B`, or is not a power of two. pub fn new(width: usize, length: usize) -> Self { Self::with_meta(width, length, vec![]) } /// Creates a new execution trace of the specified width and length, and with the specified /// metadata. /// /// This allocates all the required memory for the trace, but does not initialize it. It is /// expected that the trace will be filled using one of the data mutator methods. /// /// # Panics /// Panics if: /// * `width` is zero or greater than 255. /// * `length` is smaller than 8, greater than the biggest multiplicative subgroup in the /// field `B`, or is not a power of two. /// * Length of `meta` is greater than 65535; pub fn with_meta(width: usize, length: usize, meta: Vec<u8>) -> Self { assert!( width > 0, "execution trace must consist of at least one register" ); assert!( width <= TraceInfo::MAX_TRACE_WIDTH, "execution trace width cannot be greater than {}, but was {}", TraceInfo::MAX_TRACE_WIDTH, width ); assert!( length >= TraceInfo::MIN_TRACE_LENGTH, "execution trace must be at lest {} steps long, but was {}", TraceInfo::MIN_TRACE_LENGTH, length ); assert!( length.is_power_of_two(), "execution trace length must be a power of 2" ); assert!( log2(length) as u32 <= B::TWO_ADICITY, "execution trace length cannot exceed 2^{} steps, but was 2^{}", B::TWO_ADICITY, log2(length) ); assert!( meta.len() <= TraceInfo::MAX_META_LENGTH, "number of metadata bytes cannot be greater than {}, but was {}", TraceInfo::MAX_META_LENGTH, meta.len() ); let registers = unsafe { (0..width).map(|_| uninit_vector(length)).collect() }; ExecutionTrace { trace: registers, meta, } } /// Creates a new execution trace from a list of provided register traces. /// /// The provides `registers` vector is expected to contain register traces. /// /// # Panics /// Panics if: /// * The `registers` vector is empty or has over 255 registers. /// * Number of elements in any of the registers is smaller than 8, greater than the biggest /// multiplicative subgroup in the field `B`, or is not a power of two. /// * Number of elements is not identical for all registers. pub fn init(registers: Vec<Vec<B>>) -> Self { assert!( !registers.is_empty(), "execution trace must consist of at least one register" ); assert!( registers.len() <= TraceInfo::MAX_TRACE_WIDTH, "execution trace width cannot be greater than {}, but was {}", TraceInfo::MAX_TRACE_WIDTH, registers.len() ); let trace_length = registers[0].len(); assert!( trace_length >= TraceInfo::MIN_TRACE_LENGTH, "execution trace must be at lest {} steps long, but was {}", TraceInfo::MIN_TRACE_LENGTH, trace_length ); assert!( trace_length.is_power_of_two(), "execution trace length must be a power of 2" ); assert!( log2(trace_length) as u32 <= B::TWO_ADICITY, "execution trace length cannot exceed 2^{} steps, but was 2^{}", B::TWO_ADICITY, log2(trace_length) ); for register in registers.iter() { assert_eq!( register.len(), trace_length, "all register traces must have the same length" ); } ExecutionTrace { trace: registers, meta: vec![], } } // DATA MUTATORS // -------------------------------------------------------------------------------------------- /// Updates a value in a single cell of the execution trace. /// /// Specifically, the value in the specified `register` and the specified `step` is set to the /// provide `value`. /// /// # Panics /// Panics if either `register` or `step` are out of bounds for this execution trace. pub fn set(&mut self, register: usize, step: usize, value: B) { self.trace[register][step] = value; } /// Updates metadata for this execution trace to the specified vector of bytes. /// /// # Panics /// Panics if the length of `meta` is greater than 65535; pub fn set_meta(&mut self, meta: Vec<u8>) { assert!( meta.len() <= TraceInfo::MAX_META_LENGTH, "number of metadata bytes cannot be greater than {}, but was {}", TraceInfo::MAX_META_LENGTH, meta.len() ); self.meta = meta } /// Fill all rows in the execution trace. /// /// The rows are filled by executing the provided closures as follows: /// - `init` closure is used to initialize the first row of the trace; it receives a mutable /// reference to the first state initialized to all zeros. The contents of the state are /// copied into the first row of the trace after the closure returns. /// - `update` closure is used to populate all subsequent rows of the trace; it receives two /// parameters: /// - index of the last updated row (starting with 0). /// - a mutable reference to the last updated state; the contents of the state are copied /// into the next row of the trace after the closure returns. pub fn fill<I, U>(&mut self, init: I, update: U) where I: Fn(&mut [B]), U: Fn(usize, &mut [B]), { let mut state = vec![B::ZERO; self.width()]; init(&mut state); self.update_row(0, &state); for i in 0..self.length() - 1 { update(i, &mut state); self.update_row(i + 1, &state); } } /// Updates a single row in the execution trace with provided data. pub fn update_row(&mut self, step: usize, state: &[B]) { for (register, &value) in self.trace.iter_mut().zip(state) { register[step] = value; } } // FRAGMENTS // -------------------------------------------------------------------------------------------- /// Breaks the execution trace into mutable fragments. /// /// The number of rows in each fragment will be equal to `fragment_length` parameter. The /// returned fragments can be used to update data in the trace from multiple threads. /// /// # Panics /// Panics if `fragment_length` is smaller than 2, greater than the length of the trace, /// or is not a power of two. #[cfg(not(feature = "concurrent"))] pub fn fragments( &mut self, fragment_length: usize, ) -> vec::IntoIter<ExecutionTraceFragment<B>> { self.build_fragments(fragment_length).into_iter() } /// Breaks the execution trace into mutable fragments. /// /// The number of rows in each fragment will be equal to `fragment_length` parameter. The /// returned fragments can be used to update data in the trace from multiple threads. /// /// # Panics /// Panics if `fragment_length` is smaller than 2, greater than the length of the trace, /// or is not a power of two. #[cfg(feature = "concurrent")] pub fn fragments( &mut self, fragment_length: usize, ) -> rayon::vec::IntoIter<ExecutionTraceFragment<B>> { self.build_fragments(fragment_length).into_par_iter() } /// Returns a vector of trace fragments each covering the number of steps specified by the /// `fragment_length` parameter. fn build_fragments(&mut self, fragment_length: usize) -> Vec<ExecutionTraceFragment<B>> { assert!( fragment_length >= MIN_FRAGMENT_LENGTH, "fragment length must be at least {}, but was {}", MIN_FRAGMENT_LENGTH, fragment_length ); assert!( fragment_length <= self.length(), "length of a fragment cannot exceed {}, but was {}", self.length(), fragment_length ); assert!( fragment_length.is_power_of_two(), "fragment length must be a power of 2" ); let num_fragments = self.length() / fragment_length; let mut fragment_data = (0..num_fragments).map(|_| Vec::new()).collect::<Vec<_>>(); self.trace.iter_mut().for_each(|column| { for (i, fragment) in column.chunks_mut(fragment_length).enumerate() { fragment_data[i].push(fragment); } }); fragment_data .into_iter() .enumerate() .map(|(i, data)| ExecutionTraceFragment { index: i, offset: i * fragment_length, data, }) .collect() } // PUBLIC ACCESSORS // -------------------------------------------------------------------------------------------- /// Returns trace info for this execution trace. pub fn get_info(&self) -> TraceInfo { TraceInfo::with_meta(self.width(), self.length(), self.meta.clone()) } /// Returns number of registers in the trace table. pub fn width(&self) -> usize { self.trace.len() } /// Returns the number of states in this trace table. pub fn length(&self) -> usize { self.trace[0].len() } /// Returns value of the cell the specified `register` at the specified `step`. pub fn get(&self, register: usize, step: usize) -> B { self.trace[register][step] } /// Returns the entire register trace for the register at the specified index. pub fn get_register(&self, idx: usize) -> &[B] { &self.trace[idx] } /// Reads a single row of this trace at the specified `step` into the specified `target`. pub fn read_row_into(&self, step: usize, target: &mut [B]) { for (i, register) in self.trace.iter().enumerate() { target[i] = register[step]; } } /// Returns metadata associated with this execution trace. pub fn get_meta(&self) -> &[u8] { &self.meta } // VALIDATION // -------------------------------------------------------------------------------------------- /// Checks if this execution trace is valid against the specified AIR, and panics if not. /// /// NOTE: this is a very expensive operation and is intended for use only in debug mode. pub fn validate<A: Air<BaseElement = B>>(&self, air: &A) { // TODO: eventually, this should return errors instead of panicking // make sure the width align; if they don't something went terribly wrong assert_eq!( self.width(), air.trace_width(), "inconsistent trace width: expected {}, but was {}", self.width(), air.trace_width() ); // --- 1. make sure the assertions are valid ---------------------------------------------- for assertion in air.get_assertions() { assertion.apply(self.length(), |step, value| { assert!( value == self.get(assertion.register(), step), "trace does not satisfy assertion trace({}, {}) == {}", assertion.register(), step, value ); }); } // --- 2. make sure this trace satisfies all transition constraints ----------------------- // collect the info needed to build periodic values for a specific step let g = air.trace_domain_generator(); let periodic_values_polys = air.get_periodic_column_polys(); let mut periodic_values = vec![B::ZERO; periodic_values_polys.len()]; // initialize buffers to hold evaluation frames and results of constraint evaluations let mut x = B::ONE; let mut ev_frame = EvaluationFrame::new(self.width()); let mut evaluations = vec![B::ZERO; air.num_transition_constraints()]; for step in 0..self.length() - 1 { // build periodic values for (p, v) in periodic_values_polys.iter().zip(periodic_values.iter_mut()) { let num_cycles = air.trace_length() / p.len(); let x = x.exp((num_cycles as u32).into()); *v = polynom::eval(p, x); } // build evaluation frame self.read_row_into(step, ev_frame.current_mut()); self.read_row_into(step + 1, ev_frame.next_mut()); // evaluate transition constraints air.evaluate_transition(&ev_frame, &periodic_values, &mut evaluations); // make sure all constraints evaluated to ZERO for (i, &evaluation) in evaluations.iter().enumerate() { assert!( evaluation == B::ZERO, "transition constraint {} did not evaluate to ZERO at step {}", i, step ); } // update x coordinate of the domain x *= g; } } // LOW-DEGREE EXTENSION // -------------------------------------------------------------------------------------------- /// Extends all registers of the trace table to the length of the LDE domain. /// /// The extension is done by first interpolating each register into a polynomial over the /// trace domain, and then evaluating the polynomial over the LDE domain. pub fn extend(mut self, domain: &StarkDomain<B>) -> (TraceTable<B>, TracePolyTable<B>) { assert_eq!( self.length(), domain.trace_length(), "inconsistent trace length" ); // build and cache trace twiddles for FFT interpolation; we do it here so that we // don't have to rebuild these twiddles for every register. let inv_twiddles = fft::get_inv_twiddles::<B>(domain.trace_length()); // extend all registers; the extension procedure first interpolates register traces into // polynomials (in-place), then evaluates these polynomials over a larger domain, and // then returns extended evaluations. let extended_trace = iter_mut!(self.trace) .map(|register_trace| extend_register(register_trace, domain, &inv_twiddles)) .collect(); ( TraceTable::new(extended_trace, domain.trace_to_lde_blowup()), TracePolyTable::new(self.trace), ) } } // TRACE FRAGMENTS // ================================================================================================ /// A set of consecutive rows of an execution trace. /// /// An execution trace fragment is a "view" into the specific execution trace. Updating data in /// the fragment, directly updates the data in the underlying execution trace. /// /// A fragment cannot be instantiated directly but is created by executing /// [ExecutionTrace::fragments()] method. /// /// A fragment always contains contiguous rows, and the number of rows is guaranteed to be a power /// of two. pub struct ExecutionTraceFragment<'a, B: StarkField> { index: usize, offset: usize, data: Vec<&'a mut [B]>, } impl<'a, B: StarkField> ExecutionTraceFragment<'a, B> { // PUBLIC ACCESSORS // -------------------------------------------------------------------------------------------- /// Returns the index of this fragment. pub fn index(&self) -> usize { self.index } /// Returns the step at which the fragment starts in the context of the original execution /// trace. pub fn offset(&self) -> usize { self.offset } /// Returns the number of rows in this execution trace fragment. pub fn length(&self) -> usize { self.data[0].len() } /// Returns the width of the fragment (same as the width of the underlying execution trace). pub fn width(&self) -> usize { self.data.len() } // DATA MUTATORS // -------------------------------------------------------------------------------------------- /// Fills all rows in the fragment. /// /// The rows are filled by executing the provided closures as follows: /// - `init` closure is used to initialize the first row of the fragment; it receives a /// mutable reference to the first state initialized to all zeros. Contents of the state are /// copied into the first row of the fragment after the closure returns. /// - `update` closure is used to populate all subsequent rows of the fragment; it receives two /// parameters: /// - index of the last updated row (starting with 0). /// - a mutable reference to the last updated state; the contents of the state are copied /// into the next row of the fragment after the closure returns. pub fn fill<I, T>(&mut self, init_state: I, update_state: T) where I: Fn(&mut [B]), T: Fn(usize, &mut [B]), { let mut state = vec![B::ZERO; self.width()]; init_state(&mut state); self.update_row(0, &state); for i in 0..self.length() - 1 { update_state(i, &mut state); self.update_row(i + 1, &state); } } /// Updates a single row in the fragment with provided data. pub fn update_row(&mut self, row_idx: usize, row_data: &[B]) { for (column, &value) in self.data.iter_mut().zip(row_data) { column[row_idx] = value; } } } // HELPER FUNCTIONS // ================================================================================================ #[inline(always)] fn extend_register<B: StarkField>( trace: &mut [B], domain: &StarkDomain<B>, inv_twiddles: &[B], ) -> Vec<B> { let domain_offset = domain.offset(); let twiddles = domain.trace_twiddles(); let blowup_factor = domain.trace_to_lde_blowup(); // interpolate register trace into a polynomial; we do this over the un-shifted trace_domain fft::interpolate_poly(trace, inv_twiddles); // evaluate the polynomial over extended domain; the domain may be shifted by the // domain_offset fft::evaluate_poly_with_offset(trace, twiddles, domain_offset, blowup_factor) }