../../.cargo/katex-header.html

winter_math/polynom/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

//! Basic polynomial operations.
//!
//! This module provides a set of function for basic polynomial operations, including:
//! - Polynomial evaluation using Horner method.
//! - Polynomial interpolation using Lagrange method.
//! - Polynomial addition, subtraction, multiplication, and division.
//! - Synthetic polynomial division for efficient division by polynomials of the form
//!   `x`^`a` - `b`.
//!
//! In the context of this module any slice of field elements is considered to be a polynomial
//! in reverse coefficient form. A few examples:
//!
//! ```
//! # use winter_math::{fields::{f128::BaseElement}, FieldElement};
//! // p(x) = 2 * x + 1
//! let p = vec![BaseElement::new(1), BaseElement::new(2)];
//!
//! // p(x) = 4 * x^2 + 3
//! let p = [BaseElement::new(3), BaseElement::ZERO, BaseElement::new(4)];
//! ```

use alloc::vec::Vec;
use core::mem;

use utils::group_slice_elements;

use crate::{field::FieldElement, utils::batch_inversion};

#[cfg(test)]
mod tests;

// POLYNOMIAL EVALUATION
// ================================================================================================

/// Evaluates a polynomial at a single point and returns the result.
///
/// Evaluates polynomial `p` at coordinate `x` using
/// [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // define polynomial: f(x) = 3 * x^2 + 2 * x + 1
/// let p = (1u32..4).map(BaseElement::from).collect::<Vec<_>>();
///
/// // evaluate the polynomial at point 4
/// let x = BaseElement::new(4);
/// assert_eq!(BaseElement::new(57), eval(&p, x));
/// ```
pub fn eval<B, E>(p: &[B], x: E) -> E
where
    B: FieldElement,
    E: FieldElement + From<B>,
{
    // Horner evaluation
    p.iter().rev().fold(E::ZERO, |acc, &coeff| acc * x + E::from(coeff))
}

/// Evaluates a polynomial at multiple points and returns a vector of results.
///
/// Evaluates polynomial `p` at all coordinates in `xs` slice by repeatedly invoking
/// `polynom::eval()` function.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // define polynomial: f(x) = 3 * x^2 + 2 * x + 1
/// let p = (1_u32..4).map(BaseElement::from).collect::<Vec<_>>();
/// let xs = (3_u32..6).map(BaseElement::from).collect::<Vec<_>>();
///
/// let expected = xs.iter().map(|x| eval(&p, *x)).collect::<Vec<_>>();
/// assert_eq!(expected, eval_many(&p, &xs));
/// ```
pub fn eval_many<B, E>(p: &[B], xs: &[E]) -> Vec<E>
where
    B: FieldElement,
    E: FieldElement + From<B>,
{
    xs.iter().map(|x| eval(p, *x)).collect()
}

// POLYNOMIAL INTERPOLATION
// ================================================================================================

/// Returns a polynomial in coefficient form interpolated from a set of X and Y coordinates.
///
/// Uses [Lagrange interpolation](https://en.wikipedia.org/wiki/Lagrange_polynomial) to build a
/// polynomial from X and Y coordinates. If `remove_leading_zeros = true`, all leading coefficients
/// which are ZEROs will be truncated; otherwise, the length of result will be equal to the number
/// of X coordinates.
///
/// # Panics
/// Panics if number of X and Y coordinates is not the same.
///
/// # Example
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// # use rand_utils::rand_vector;
/// let xs: Vec<BaseElement> = rand_vector(16);
/// let ys: Vec<BaseElement> = rand_vector(16);
///
/// let p = interpolate(&xs, &ys, false);
/// assert_eq!(ys, eval_many(&p, &xs));
/// ```
pub fn interpolate<E>(xs: &[E], ys: &[E], remove_leading_zeros: bool) -> Vec<E>
where
    E: FieldElement,
{
    debug_assert!(xs.len() == ys.len(), "number of X and Y coordinates must be the same");

    let roots = poly_from_roots(xs);
    let numerators: Vec<Vec<E>> = xs.iter().map(|&x| syn_div(&roots, 1, x)).collect();

    let denominators: Vec<E> = numerators.iter().zip(xs).map(|(e, &x)| eval(e, x)).collect();
    let denominators = batch_inversion(&denominators);

    let mut result = vec![E::ZERO; xs.len()];
    for i in 0..xs.len() {
        let y_slice = ys[i] * denominators[i];
        for (j, res) in result.iter_mut().enumerate() {
            *res += numerators[i][j] * y_slice;
        }
    }

    if remove_leading_zeros {
        crate::polynom::remove_leading_zeros(&result)
    } else {
        result
    }
}

/// Returns a vector of polynomials interpolated from the provided X and Y coordinate batches.
///
/// Uses [Lagrange interpolation](https://en.wikipedia.org/wiki/Lagrange_polynomial) to build a
/// vector of polynomial from X and Y coordinate batches (one polynomial per batch).
///
/// When the number of batches is larger, this function is significantly faster than using
/// `polynom::interpolate()` function individually for each batch of coordinates. The speed-up
/// is primarily due to computing all inversions as a single batch inversion across all
/// coordinate batches.
///
/// # Panics
/// Panics if the number of X coordinate batches and Y coordinate batches is not the same.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// # use rand_utils::rand_array;
/// let x_batches: Vec<[BaseElement; 8]> = vec![
///     rand_array(),
///     rand_array(),
/// ];
/// let y_batches: Vec<[BaseElement; 8]> = vec![
///     rand_array(),
///     rand_array(),
/// ];
///
/// let polys = interpolate_batch(&x_batches, &y_batches);
/// for ((p, xs), ys) in polys.iter().zip(x_batches).zip(y_batches) {
///     assert_eq!(ys.to_vec(), eval_many(p, &xs));
/// }
/// ```
pub fn interpolate_batch<E, const N: usize>(xs: &[[E; N]], ys: &[[E; N]]) -> Vec<[E; N]>
where
    E: FieldElement,
{
    debug_assert!(
        xs.len() == ys.len(),
        "number of X coordinate batches and Y coordinate batches must be the same"
    );

    let n = xs.len();
    let mut equations = vec![[E::ZERO; N]; n * N];
    let mut inverses = vec![E::ZERO; n * N];

    // TODO: converting this to an array results in about 5% speed-up, but unfortunately, complex
    // generic constraints are not yet supported: https://github.com/rust-lang/rust/issues/76560
    let mut roots = vec![E::ZERO; N + 1];

    for (i, xs) in xs.iter().enumerate() {
        fill_zero_roots(xs, &mut roots);
        for (j, &x) in xs.iter().enumerate() {
            let equation = &mut equations[i * N + j];
            // optimized synthetic division for this context
            equation[N - 1] = roots[N];
            for k in (0..N - 1).rev() {
                equation[k] = roots[k + 1] + equation[k + 1] * x;
            }
            inverses[i * N + j] = eval(equation, x);
        }
    }
    let equations = group_slice_elements::<[E; N], N>(&equations);
    let inverses_vec = batch_inversion(&inverses);
    let inverses = group_slice_elements::<E, N>(&inverses_vec);

    let mut result = vec![[E::ZERO; N]; n];
    for (i, poly) in result.iter_mut().enumerate() {
        for j in 0..N {
            let inv_y = ys[i][j] * inverses[i][j];
            for (res_coeff, &eq_coeff) in poly.iter_mut().zip(equations[i][j].iter()) {
                *res_coeff += eq_coeff * inv_y;
            }
        }
    }

    result
}

// POLYNOMIAL MATH OPERATIONS
// ================================================================================================

/// Returns a polynomial resulting from adding two polynomials together.
///
/// Polynomials `a` and `b` are expected to be in the coefficient form, and the returned
/// polynomial will be in the coefficient form as well. The length of the returned vector
/// will be max(a.len(), b.len()).
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p1(x) = 4 * x^2 + 3 * x + 2
/// let p1 = (2_u32..5).map(BaseElement::from).collect::<Vec<_>>();
/// // p2(x) = 2 * x + 1
/// let p2 = (1_u32..3).map(BaseElement::from).collect::<Vec<_>>();
///
/// // expected result = 4 * x^2 + 5 * x + 3
/// let expected = vec![
///     BaseElement::new(3),
///     BaseElement::new(5),
///     BaseElement::new(4),
/// ];
/// assert_eq!(expected, add(&p1, &p2));
/// ```
pub fn add<E>(a: &[E], b: &[E]) -> Vec<E>
where
    E: FieldElement,
{
    let result_len = core::cmp::max(a.len(), b.len());
    let mut result = Vec::with_capacity(result_len);
    for i in 0..result_len {
        let c1 = if i < a.len() { a[i] } else { E::ZERO };
        let c2 = if i < b.len() { b[i] } else { E::ZERO };
        result.push(c1 + c2);
    }
    result
}

/// Returns a polynomial resulting from subtracting one polynomial from another.
///
/// Specifically, subtracts polynomial `b` from polynomial `a` and returns the result. Both
/// polynomials are expected to be in the coefficient form, and the returned polynomial will
/// be in the coefficient form as well.  The length of the returned vector will be
/// max(a.len(), b.len()).
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p1(x) = 4 * x^2 + 3 * x + 2
/// let p1 = (2_u32..5).map(BaseElement::from).collect::<Vec<_>>();
/// // p2(x) = 2 * x + 1
/// let p2 = (1_u32..3).map(BaseElement::from).collect::<Vec<_>>();
///
/// // expected result = 4 * x^2 + x + 1
/// let expected = vec![
///     BaseElement::new(1),
///     BaseElement::new(1),
///     BaseElement::new(4),
/// ];
/// assert_eq!(expected, sub(&p1, &p2));
/// ```
pub fn sub<E>(a: &[E], b: &[E]) -> Vec<E>
where
    E: FieldElement,
{
    let result_len = core::cmp::max(a.len(), b.len());
    let mut result = Vec::with_capacity(result_len);
    for i in 0..result_len {
        let c1 = if i < a.len() { a[i] } else { E::ZERO };
        let c2 = if i < b.len() { b[i] } else { E::ZERO };
        result.push(c1 - c2);
    }
    result
}

/// Returns a polynomial resulting from multiplying two polynomials together.
///
/// Polynomials `a` and `b` are expected to be in the coefficient form, and the returned
/// polynomial will be in the coefficient form as well. The length of the returned vector
/// will be a.len() + b.len() - 1.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p1(x) = x + 1
/// let p1 = [BaseElement::ONE, BaseElement::ONE];
/// // p2(x) = x^2 + 2
/// let p2 = [BaseElement::new(2), BaseElement::ZERO, BaseElement::ONE];
///
/// // expected result = x^3 + x^2 + 2 * x + 2
/// let expected = vec![
///     BaseElement::new(2),
///     BaseElement::new(2),
///     BaseElement::new(1),
///     BaseElement::new(1),
/// ];
/// assert_eq!(expected, mul(&p1, &p2));
/// ```
pub fn mul<E>(a: &[E], b: &[E]) -> Vec<E>
where
    E: FieldElement,
{
    let result_len = a.len() + b.len() - 1;
    let mut result = vec![E::ZERO; result_len];
    for i in 0..a.len() {
        for j in 0..b.len() {
            let s = a[i] * b[j];
            result[i + j] += s;
        }
    }
    result
}

/// Returns a polynomial resulting from multiplying a given polynomial by a scalar value.
///
/// Specifically, multiplies every coefficient of polynomial `p` by constant `k` and returns
/// the resulting vector.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// let p = [
///     BaseElement::new(1),
///     BaseElement::new(2),
///     BaseElement::new(3),
/// ];
/// let k = BaseElement::new(2);
///
/// let expected = vec![
///     BaseElement::new(2),
///     BaseElement::new(4),
///     BaseElement::new(6),
/// ];
/// assert_eq!(expected, mul_by_scalar(&p, k));
/// ```
pub fn mul_by_scalar<E>(p: &[E], k: E) -> Vec<E>
where
    E: FieldElement,
{
    let mut result = Vec::with_capacity(p.len());
    for coeff in p {
        result.push(*coeff * k);
    }
    result
}

/// Returns a polynomial resulting from dividing one polynomial by another.
///
/// Specifically, divides polynomial `a` by polynomial `b` and returns the result. If the
/// polynomials don't divide evenly, the remainder is ignored. Both polynomials are expected to
/// be in the coefficient form, and the returned polynomial will be in the coefficient form as
/// well. The length of the returned vector will be a.len() - b.len() + 1.
///
/// # Panics
/// Panics if:
/// * Polynomial `b` is empty.
/// * Degree of polynomial `b` is zero and the constant coefficient is ZERO.
/// * The degree of polynomial `b` is greater than the degree of polynomial `a`.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p1(x) = x^3 + x^2 + 2 * x + 2
/// let p1 = [
///     BaseElement::new(2),
///     BaseElement::new(2),
///     BaseElement::new(1),
///     BaseElement::new(1),
/// ];
/// // p2(x) = x^2 + 2
/// let p2 = [BaseElement::new(2), BaseElement::ZERO, BaseElement::ONE];
///
/// // expected result = x + 1
/// let expected = vec![BaseElement::ONE, BaseElement::ONE];
/// assert_eq!(expected, div(&p1, &p2));
/// ```
pub fn div<E>(a: &[E], b: &[E]) -> Vec<E>
where
    E: FieldElement,
{
    let mut apos = degree_of(a);
    let mut a = a.to_vec();

    let bpos = degree_of(b);
    assert!(apos >= bpos, "cannot divide by polynomial of higher degree");
    if bpos == 0 {
        assert!(!b.is_empty(), "cannot divide by empty polynomial");
        assert!(b[0] != E::ZERO, "cannot divide polynomial by zero");
    }

    let mut result = vec![E::ZERO; apos - bpos + 1];
    for i in (0..result.len()).rev() {
        let quot = a[apos] / b[bpos];
        result[i] = quot;
        for j in (0..bpos).rev() {
            a[i + j] -= b[j] * quot;
        }
        apos = apos.wrapping_sub(1);
    }

    result
}

/// Returns a polynomial resulting from dividing a polynomial by a polynomial of special form.
///
/// Specifically, divides polynomial `p` by polynomial (x^`a` - `b`) using
/// [synthetic division](https://en.wikipedia.org/wiki/Synthetic_division) method; if the
/// polynomials don't divide evenly, the remainder is ignored. Polynomial `p` is expected
/// to be in the coefficient form, and the result will be in the coefficient form as well.
/// The length of the resulting polynomial will be equal to `p.len()`.
///
/// This function is significantly faster than the generic `polynom::div()` function.
///
/// # Panics
/// Panics if:
/// * `a` is zero;
/// * `b` is zero;
/// * `p.len()` is smaller than or equal to `a`.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p(x) = x^3 + x^2 + 2 * x + 2
/// let p = [
///     BaseElement::new(2),
///     BaseElement::new(2),
///     BaseElement::new(1),
///     BaseElement::new(1),
/// ];
///
/// // expected result = x^2 + 2
/// let expected = vec![
///     BaseElement::new(2),
///     BaseElement::ZERO,
///     BaseElement::new(1),
///     BaseElement::ZERO,
/// ];
///
/// // divide by x + 1
/// assert_eq!(expected, syn_div(&p, 1, -BaseElement::ONE));
/// ```
pub fn syn_div<E>(p: &[E], a: usize, b: E) -> Vec<E>
where
    E: FieldElement,
{
    let mut result = p.to_vec();
    syn_div_in_place(&mut result, a, b);
    result
}

/// Divides a polynomial by a polynomial of special form and saves the result into the original
/// polynomial.
///
/// Specifically, divides polynomial `p` by polynomial (x^`a` - `b`) using
/// [synthetic division](https://en.wikipedia.org/wiki/Synthetic_division) method and saves the
/// result into `p`. If the polynomials don't divide evenly, the remainder is ignored. Polynomial
/// `p` is expected to be in the coefficient form, and the result will be in coefficient form as
/// well.
///
/// This function is significantly faster than the generic `polynom::div()` function, and as
/// compared to `polynom::syn_div()` function, this function does not allocate any additional
/// memory.
///
/// # Panics
/// Panics if:
/// * `a` is zero;
/// * `b` is zero;
/// * `p.len()` is smaller than or equal to `a`.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p(x) = x^3 + x^2 + 2 * x + 2
/// let mut p = [
///     BaseElement::new(2),
///     BaseElement::new(2),
///     BaseElement::new(1),
///     BaseElement::new(1),
/// ];
///
/// // divide by x + 1
/// syn_div_in_place(&mut p, 1, -BaseElement::ONE);
///
/// // expected result = x^2 + 2
/// let expected = [
///     BaseElement::new(2),
///     BaseElement::ZERO,
///     BaseElement::new(1),
///     BaseElement::ZERO,
/// ];
///
/// assert_eq!(expected, p);
pub fn syn_div_in_place<E>(p: &mut [E], a: usize, b: E)
where
    E: FieldElement,
{
    assert!(a != 0, "divisor degree cannot be zero");
    assert!(b != E::ZERO, "constant cannot be zero");
    assert!(p.len() > a, "divisor degree cannot be greater than dividend size");

    if a == 1 {
        // if we are dividing by (x - `b`), we can use a single variable to keep track
        // of the remainder; this way, we can avoid shifting the values in the slice later
        let mut c = E::ZERO;
        for coeff in p.iter_mut().rev() {
            *coeff += b * c;
            mem::swap(coeff, &mut c);
        }
    } else {
        // if we are dividing by a polynomial of higher power, we need to keep track of the
        // full remainder. we do that in place, but then need to shift the values at the end
        // to discard the remainder
        let degree_offset = p.len() - a;
        if b == E::ONE {
            // if `b` is 1, no need to multiply by `b` in every iteration of the loop
            for i in (0..degree_offset).rev() {
                p[i] += p[i + a];
            }
        } else {
            for i in (0..degree_offset).rev() {
                p[i] += p[i + a] * b;
            }
        }
        // discard the remainder
        p.copy_within(a.., 0);
        p[degree_offset..].fill(E::ZERO);
    }
}

/// Divides a polynomial by a polynomial given its roots and saves the result into the original
/// polynomial.
///
/// Specifically, divides polynomial `p` by polynomial \prod_{i = 1}^m (x - `x_i`) using
/// [synthetic division](https://en.wikipedia.org/wiki/Synthetic_division) method and saves the
/// result into `p`. If the polynomials don't divide evenly, the remainder is ignored. Polynomial
/// `p` is expected to be in the coefficient form, and the result will be in coefficient form as
/// well.
///
/// This function is significantly faster than the generic `polynom::div()` function, using
/// the coefficients of the divisor.
///
/// # Panics
/// Panics if:
/// * `roots.len()` is zero;
/// * `p.len()` is smaller than or equal to `roots.len()`.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// // p(x) = x^3 - 7 * x + 6
/// let mut p = [
///     BaseElement::new(6),
///     -BaseElement::new(7),
///     BaseElement::new(0),
///     BaseElement::new(1),
/// ];
///
/// // divide by (x - 1) * (x - 2)
/// let zeros = vec![BaseElement::new(1), BaseElement::new(2)];
/// syn_div_roots_in_place(&mut p, &zeros);
///
/// // expected result = x + 3
/// let expected = [
///     BaseElement::new(3),
///     BaseElement::new(1),
///     BaseElement::ZERO,
///     BaseElement::ZERO,
/// ];
///
/// assert_eq!(expected, p);
pub fn syn_div_roots_in_place<E>(p: &mut [E], roots: &[E])
where
    E: FieldElement,
{
    assert!(!roots.is_empty(), "divisor should contain at least one linear factor");
    assert!(p.len() > roots.len(), "divisor degree cannot be greater than dividend size");

    for root in roots {
        let mut c = E::ZERO;
        for coeff in p.iter_mut().rev() {
            *coeff += *root * c;
            mem::swap(coeff, &mut c);
        }
    }
}

// DEGREE INFERENCE
// ================================================================================================

/// Returns the degree of the provided polynomial.
///
/// If the size of the provided slice is much larger than the degree of the polynomial (i.e.,
/// a large number of leading coefficients is ZERO), this operation can be quite inefficient.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// assert_eq!(0, degree_of::<BaseElement>(&[]));
/// assert_eq!(0, degree_of(&[BaseElement::ONE]));
/// assert_eq!(1, degree_of(&[BaseElement::ONE, BaseElement::new(2)]));
/// assert_eq!(1, degree_of(&[BaseElement::ONE, BaseElement::new(2), BaseElement::ZERO]));
/// assert_eq!(2, degree_of(&[BaseElement::ONE, BaseElement::new(2), BaseElement::new(3)]));
/// assert_eq!(
///     2,
///     degree_of(&[
///         BaseElement::ONE,
///         BaseElement::new(2),
///         BaseElement::new(3),
///         BaseElement::ZERO
///     ])
/// );
/// ```
pub fn degree_of<E>(poly: &[E]) -> usize
where
    E: FieldElement,
{
    for i in (0..poly.len()).rev() {
        if poly[i] != E::ZERO {
            return i;
        }
    }
    0
}

/// Returns a polynomial with all leading ZERO coefficients removed.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// let a = vec![1u128, 2, 3, 4, 5, 6, 0, 0]
///     .into_iter()
///     .map(BaseElement::new)
///     .collect::<Vec<_>>();
/// let b = remove_leading_zeros(&a);
/// assert_eq!(6, b.len());
/// assert_eq!(a[..6], b);
///
/// let a = vec![0u128, 0, 0, 0]
///     .into_iter()
///     .map(BaseElement::new)
///     .collect::<Vec<_>>();
/// let b = remove_leading_zeros(&a);
/// assert_eq!(0, b.len());
/// ```
pub fn remove_leading_zeros<E>(values: &[E]) -> Vec<E>
where
    E: FieldElement,
{
    for i in (0..values.len()).rev() {
        if values[i] != E::ZERO {
            return values[..(i + 1)].to_vec();
        }
    }
    vec![]
}

/// Returns the coefficients of polynomial given its roots.
///
/// # Examples
/// ```
/// # use winter_math::polynom::*;
/// # use winter_math::{fields::{f128::BaseElement}, FieldElement};
/// let xs = vec![1u128, 2]
///     .into_iter()
///     .map(BaseElement::new)
///     .collect::<Vec<_>>();
///
/// let mut expected_poly = vec![2u128, 3, 1]
///     .into_iter()
///     .map(BaseElement::new)
///     .collect::<Vec<_>>();
/// expected_poly[1] *= -BaseElement::ONE;
///
/// let poly = poly_from_roots(&xs);
/// assert_eq!(expected_poly, poly);
/// ```
pub fn poly_from_roots<E: FieldElement>(xs: &[E]) -> Vec<E> {
    let mut result = unsafe { utils::uninit_vector(xs.len() + 1) };
    fill_zero_roots(xs, &mut result);
    result
}

// HELPER FUNCTIONS
// ================================================================================================

fn fill_zero_roots<E: FieldElement>(xs: &[E], result: &mut [E]) {
    let mut n = result.len();
    n -= 1;
    result[n] = E::ONE;

    for i in 0..xs.len() {
        n -= 1;
        result[n] = E::ZERO;
        #[allow(clippy::assign_op_pattern)]
        for j in n..xs.len() {
            result[j] = result[j] - result[j + 1] * xs[i];
        }
    }
}