1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
use crypto::{BatchMerkleProof, ElementHasher, Hasher};
use math::{log2, FieldElement};
use utils::{
collections::Vec, string::ToString, ByteReader, ByteWriter, Deserializable,
DeserializationError, Serializable, SliceReader,
};
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct FriProof {
layers: Vec<FriProofLayer>,
remainder: Vec<u8>,
num_partitions: u8,
}
impl FriProof {
pub(crate) fn new<E: FieldElement>(
layers: Vec<FriProofLayer>,
remainder: Vec<E>,
num_partitions: usize,
) -> Self {
assert!(
!remainder.is_empty(),
"number of remainder elements must be greater than zero"
);
assert!(
remainder.len().is_power_of_two(),
"size of the remainder must be a power of two, but was {}",
remainder.len()
);
assert!(
num_partitions > 0,
"number of partitions must be greater than zero"
);
assert!(
num_partitions.is_power_of_two(),
"number of partitions must be a power of two, but was {}",
num_partitions
);
FriProof {
layers,
remainder: remainder.to_bytes(),
num_partitions: num_partitions.trailing_zeros() as u8,
}
}
pub fn num_layers(&self) -> usize {
self.layers.len()
}
pub fn num_remainder_elements<E: FieldElement>(&self) -> usize {
self.remainder.len() / E::ELEMENT_BYTES
}
pub fn num_partitions(&self) -> usize {
2usize.pow(self.num_partitions as u32)
}
pub fn size(&self) -> usize {
self.layers
.iter()
.fold(self.remainder.len() + 3, |acc, layer| acc + layer.size())
}
#[allow(clippy::type_complexity)]
pub fn parse_layers<H, E>(
self,
mut domain_size: usize,
folding_factor: usize,
) -> Result<(Vec<Vec<E>>, Vec<BatchMerkleProof<H>>), DeserializationError>
where
E: FieldElement,
H: ElementHasher<BaseField = E::BaseField>,
{
assert!(
domain_size.is_power_of_two(),
"domain size must be a power of two"
);
assert!(
folding_factor.is_power_of_two(),
"folding factor must be a power of two"
);
assert!(folding_factor > 1, "folding factor must be greater than 1");
let mut layer_proofs = Vec::new();
let mut layer_queries = Vec::new();
let num_remainder_elements = self.num_remainder_elements::<E>();
for (i, layer) in self.layers.into_iter().enumerate() {
domain_size /= folding_factor;
let (qv, mp) = layer.parse(domain_size, folding_factor).map_err(|err| {
DeserializationError::InvalidValue(format!(
"failed to parse FRI layer {}: {}",
i, err
))
})?;
layer_proofs.push(mp);
layer_queries.push(qv);
}
if domain_size != num_remainder_elements {
return Err(DeserializationError::InvalidValue(format!(
"FRI remainder domain size must be {}, but was {}",
num_remainder_elements, domain_size,
)));
}
Ok((layer_queries, layer_proofs))
}
pub fn parse_remainder<E: FieldElement>(&self) -> Result<Vec<E>, DeserializationError> {
let num_elements = self.num_remainder_elements::<E>();
if !num_elements.is_power_of_two() {
return Err(DeserializationError::InvalidValue(format!(
"number of remainder values must be a power of two, but {} was implied",
num_elements
)));
}
let mut reader = SliceReader::new(&self.remainder);
let remainder = E::read_batch_from(&mut reader, num_elements).map_err(|err| {
DeserializationError::InvalidValue(format!("failed to parse FRI remainder: {}", err))
})?;
if reader.has_more_bytes() {
return Err(DeserializationError::UnconsumedBytes);
}
Ok(remainder)
}
}
impl Serializable for FriProof {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_u8(self.layers.len() as u8);
for layer in self.layers.iter() {
layer.write_into(target);
}
target.write_u8(self.remainder.len().trailing_zeros() as u8);
target.write_u8_slice(&self.remainder);
target.write_u8(self.num_partitions);
}
}
impl Deserializable for FriProof {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let num_layers = source.read_u8()? as usize;
let layers = FriProofLayer::read_batch_from(source, num_layers)?;
let remainder_bytes = 2usize.pow(source.read_u8()? as u32);
let remainder = source.read_u8_vec(remainder_bytes)?;
let num_partitions = source.read_u8()?;
Ok(FriProof {
layers,
remainder,
num_partitions,
})
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct FriProofLayer {
values: Vec<u8>,
paths: Vec<u8>,
}
impl FriProofLayer {
pub(crate) fn new<H: Hasher, E: FieldElement, const N: usize>(
query_values: Vec<[E; N]>,
merkle_proof: BatchMerkleProof<H>,
) -> Self {
assert!(!query_values.is_empty(), "query values cannot be empty");
FriProofLayer {
values: query_values.to_bytes(),
paths: merkle_proof.serialize_nodes(),
}
}
pub fn size(&self) -> usize {
self.values.len() + 4 + self.paths.len() + 4
}
pub fn parse<H, E>(
self,
domain_size: usize,
folding_factor: usize,
) -> Result<(Vec<E>, BatchMerkleProof<H>), DeserializationError>
where
E: FieldElement,
H: ElementHasher<BaseField = E::BaseField>,
{
let num_query_bytes = E::ELEMENT_BYTES * folding_factor;
if self.values.len() % num_query_bytes != 0 {
return Err(DeserializationError::InvalidValue(format!(
"number of value bytes ({}) does not divide into whole number of queries",
self.values.len(),
)));
}
let num_queries = self.values.len() / num_query_bytes;
if num_queries == 0 {
return Err(DeserializationError::InvalidValue(
"a FRI layer must contain at least one query".to_string(),
));
}
let mut hashed_queries = vec![H::Digest::default(); num_queries];
let mut query_values = Vec::with_capacity(num_queries * folding_factor);
let mut reader = SliceReader::new(&self.values);
for query_hash in hashed_queries.iter_mut() {
let mut qe = E::read_batch_from(&mut reader, folding_factor)?;
*query_hash = H::hash_elements(&qe);
query_values.append(&mut qe);
}
if reader.has_more_bytes() {
return Err(DeserializationError::UnconsumedBytes);
}
let mut reader = SliceReader::new(&self.paths);
let tree_depth = log2(domain_size) as u8;
let merkle_proof = BatchMerkleProof::deserialize(&mut reader, hashed_queries, tree_depth)?;
if reader.has_more_bytes() {
return Err(DeserializationError::UnconsumedBytes);
}
Ok((query_values, merkle_proof))
}
}
impl Serializable for FriProofLayer {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_u32(self.values.len() as u32);
target.write_u8_slice(&self.values);
target.write_u32(self.paths.len() as u32);
target.write_u8_slice(&self.paths);
}
}
impl Deserializable for FriProofLayer {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let num_value_bytes = source.read_u32()?;
if num_value_bytes == 0 {
return Err(DeserializationError::InvalidValue(
"a FRI proof layer must contain at least one queried evaluation".to_string(),
));
}
let values = source.read_u8_vec(num_value_bytes as usize)?;
let num_paths_bytes = source.read_u32()?;
let paths = source.read_u8_vec(num_paths_bytes as usize)?;
Ok(FriProofLayer { values, paths })
}
}