1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use crate::{errors::RandomCoinError, Digest, ElementHasher, RandomCoin};
use core::convert::TryInto;
use math::{FieldElement, StarkField};
use utils::collections::Vec;
// DEFAULT RANDOM COIN IMPLEMENTATION
// ================================================================================================
/// Pseudo-random element generator for finite fields, which is a default implementation of the
/// RandomCoin trait.
///
/// A random coin can be used to draw elements uniformly at random from the specified base field
/// or from any extension of the base field.
///
/// Internally we use a cryptographic hash function (which is specified via the `H` type parameter),
/// to draw elements from the field. The coin works roughly as follows:
/// - The internal state of the coin consists of a `seed` and a `counter`. At instantiation
/// time, the `seed` is set to a hash of the provided bytes, and the `counter` is set to 0.
/// - To draw the next element, we increment the `counter` and compute hash(`seed` || `counter`).
/// If the resulting value is a valid field element, we return the result; otherwise we try
/// again until a valid element is found or the number of allowed tries is exceeded.
/// - We can also re-seed the coin with a new value. During the reseeding procedure, the
/// seed is set to hash(`old_seed` || `new_seed`), and the counter is reset to 0.
///
/// # Examples
/// ```
/// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // initial elements for seeding the random coin
/// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
///
/// // instantiate a random coin using BLAKE3 as the hash function
/// let mut coin = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
///
/// // should draw different elements each time
/// let e1 = coin.draw::<BaseElement>().unwrap();;
/// let e2 = coin.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
///
/// let e3 = coin.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e3);
/// assert_ne!(e2, e3);
///
/// // should draw same elements for the same seed
/// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_eq!(e1, e2);
///
/// // should draw different elements based on seed
/// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let seed = &[BaseElement::new(2), BaseElement::new(3), BaseElement::new(4), BaseElement::new(5)];
/// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
/// ```
pub struct DefaultRandomCoin<H: ElementHasher> {
seed: H::Digest,
counter: u64,
}
impl<H: ElementHasher> DefaultRandomCoin<H> {
/// Updates the state by incrementing the counter and returns hash(seed || counter)
fn next(&mut self) -> H::Digest {
self.counter += 1;
H::merge_with_int(self.seed, self.counter)
}
}
impl<B: StarkField, H: ElementHasher<BaseField = B>> RandomCoin for DefaultRandomCoin<H> {
type BaseField = B;
type Hasher = H;
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns a new random coin instantiated with the provided `seed`.
fn new(seed: &[Self::BaseField]) -> Self {
let seed = H::hash_elements(seed);
Self { seed, counter: 0 }
}
// RESEEDING
// --------------------------------------------------------------------------------------------
/// Reseeds the coin with the specified data by setting the new seed to hash(`seed` || `data`).
///
/// # Examples
/// ```
/// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // initial elements for seeding the random coin
/// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
///
/// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
///
/// // should draw the same element form both coins
/// let e1 = coin1.draw::<BaseElement>().unwrap();
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_eq!(e1, e2);
///
/// // after reseeding should draw different elements
/// coin2.reseed(Blake3_256::<BaseElement>::hash(&[2, 3, 4, 5]));
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
/// ```
fn reseed(&mut self, data: H::Digest) {
self.seed = H::merge(&[self.seed, data]);
self.counter = 0;
}
/// Reseeds the coin with the specified value by setting the new seed to hash(`seed` ||
/// `value`).
///
/// # Examples
/// ```
/// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // initial elements for seeding the random coin
/// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
///
/// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
///
/// // should draw the same element form both coins
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_eq!(e1, e2);
///
/// // after reseeding should draw different elements
/// coin2.reseed_with_int(42);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
/// ```
fn reseed_with_int(&mut self, value: u64) {
self.seed = H::merge_with_int(self.seed, value);
self.counter = 0;
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the number of leading zeros in the seed if it is interpreted as an integer in
/// big-endian byte order.
///
/// # Examples
/// ```
/// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // initial elements for seeding the random coin
/// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
///
/// let mut coin = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
///
/// let mut value = 0;
/// while coin.check_leading_zeros(value) < 2 {
/// value += 1;
/// }
///
/// coin.reseed_with_int(value);
/// assert!(coin.leading_zeros() >= 2);
/// ```
fn leading_zeros(&self) -> u32 {
let bytes = self.seed.as_bytes();
let seed_head = u64::from_le_bytes(bytes[..8].try_into().unwrap());
seed_head.trailing_zeros()
}
/// Computes hash(`seed` || `value`) and returns the number of leading zeros in the resulting
/// value if it is interpreted as an integer in big-endian byte order.
fn check_leading_zeros(&self, value: u64) -> u32 {
let new_seed = H::merge_with_int(self.seed, value);
let bytes = new_seed.as_bytes();
let seed_head = u64::from_le_bytes(bytes[..8].try_into().unwrap());
seed_head.trailing_zeros()
}
// DRAW METHODS
// --------------------------------------------------------------------------------------------
/// Returns the next pseudo-random field element.
///
/// # Errors
/// Returns an error if a valid field element could not be generated after 1000 calls to the
/// PRNG.
fn draw<E: FieldElement>(&mut self) -> Result<E, RandomCoinError> {
for _ in 0..1000 {
// get the next pseudo-random value and take the first ELEMENT_BYTES from it
let value = self.next();
let bytes = &value.as_bytes()[..E::ELEMENT_BYTES];
// check if the bytes can be converted into a valid field element; if they can,
// return; otherwise try again
if let Some(element) = E::from_random_bytes(bytes) {
return Ok(element);
}
}
Err(RandomCoinError::FailedToDrawFieldElement(1000))
}
/// Returns a vector of unique integers selected from the range [0, domain_size).
///
/// # Errors
/// Returns an error if the specified number of unique integers could not be generated
/// after 1000 calls to the PRNG.
///
/// # Panics
/// Panics if:
/// - `domain_size` is not a power of two.
/// - `num_values` is greater than or equal to `domain_size`.
///
/// # Examples
/// ```
/// # use std::collections::HashSet;
/// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // initial elements for seeding the random coin
/// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
///
/// let mut coin = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
///
/// let num_values = 20;
/// let domain_size = 64;
/// let values = coin.draw_integers(num_values, domain_size).unwrap();
///
/// assert_eq!(num_values, values.len());
///
/// let mut value_set = HashSet::new();
/// for value in values {
/// assert!(value < domain_size);
/// assert!(value_set.insert(value));
/// }
/// ```
fn draw_integers(
&mut self,
num_values: usize,
domain_size: usize,
) -> Result<Vec<usize>, RandomCoinError> {
assert!(
domain_size.is_power_of_two(),
"domain size must be a power of two"
);
assert!(
num_values < domain_size,
"number of values must be smaller than domain size"
);
// determine how many bits are needed to represent valid values in the domain
let v_mask = (domain_size - 1) as u64;
// draw values from PRNG until we get as many unique values as specified by num_queries
let mut values = Vec::new();
for _ in 0..1000 {
// get the next pseudo-random value and read the first 8 bytes from it
let bytes: [u8; 8] = self.next().as_bytes()[..8].try_into().unwrap();
// convert to integer and limit the integer to the number of bits which can fit
// into the specified domain
let value = (u64::from_le_bytes(bytes) & v_mask) as usize;
if values.contains(&value) {
continue;
}
values.push(value);
if values.len() == num_values {
break;
}
}
if values.len() < num_values {
return Err(RandomCoinError::FailedToDrawIntegers(
num_values,
values.len(),
1000,
));
}
Ok(values)
}
}