winter_crypto/merkle/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use core::slice;
mod proofs;
pub use proofs::BatchMerkleProof;
use crate::{Hasher, MerkleTreeError, VectorCommitment};
#[cfg(feature = "concurrent")]
pub mod concurrent;
#[cfg(test)]
mod tests;
// TYPES AND INTERFACES
// ================================================================================================
/// A fully-balanced Merkle tree.
///
/// In this implementation, a Merkle tree consists of two types of nodes: leaves and internal nodes
/// (one of which is a tree root). All nodes must be instances of the digest specified by the
/// [Hasher] used to build the tree.
///
/// ```text
/// * <- tree root
/// / \
/// / \
/// * * <- internal nodes
/// / \ / \
/// o o o o <- leaves
/// | | | |
/// # # # # <- values
/// ```
///
/// A tree can be built from a slice of leaves using [MerkleTree::new()] function. Thus, the user
/// is responsible for performing the first level of hashing (i.e., hashing values into leaf
/// nodes). The number of leaves must always be a power of two so that the tree is fully balanced,
/// and a tree must contain at least two leaves.
///
/// The depth of a tree is zero-based. Thus, a tree with two leaves has depth 1, a tree with four
/// leaves has depth 2 etc.
///
/// When the crate is compiled with `concurrent` feature enabled, tree construction will be
/// performed in multiple threads (usually, as many threads as there are logical cores on the
/// machine). The number of threads can be configured via `RAYON_NUM_THREADS` environment variable.
///
/// To generate an inclusion proof for a given leaf, [MerkleTree::prove()] method can be used.
/// You can also use [MerkleTree::prove_batch()] method to generate inclusion proofs for multiple
/// leaves. The advantage of the batch method is that redundant internal nodes are removed from
/// the batch proof, thereby compressing it (we use a variation of the
/// [Octopus](https://eprint.iacr.org/2017/933) algorithm).
///
/// To verify proofs, [MerkleTree::verify()] and [MerkleTree::verify_batch()] functions can be
/// used respectively.
///
/// # Examples
/// ```
/// # use winter_crypto::{MerkleTree, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// type Blake3 = Blake3_256::<BaseElement>;
///
/// // build a tree
/// let leaves = [
/// Blake3::hash(&[1u8]),
/// Blake3::hash(&[2u8]),
/// Blake3::hash(&[3u8]),
/// Blake3::hash(&[4u8]),
/// ];
/// let tree = MerkleTree::<Blake3>::new(leaves.to_vec()).unwrap();
/// assert_eq!(2, tree.depth());
/// assert_eq!(leaves, tree.leaves());
///
/// // generate a proof
/// let (leaf, proof) = tree.prove(2).unwrap();
/// assert_eq!(2, proof.len());
/// assert_eq!(leaves[2], leaf);
///
/// // verify proof
/// assert!(MerkleTree::<Blake3>::verify(*tree.root(), 2, leaf, &proof).is_ok());
/// assert!(MerkleTree::<Blake3>::verify(*tree.root(), 1, leaf, &proof).is_err());
/// ```
#[derive(Debug)]
pub struct MerkleTree<H: Hasher> {
nodes: Vec<H::Digest>,
leaves: Vec<H::Digest>,
}
/// Merkle tree opening consisting of a leaf value and a Merkle path leading from this leaf
/// up to the root (excluding the root itself).
pub type MerkleTreeOpening<H> = (<H as Hasher>::Digest, Vec<<H as Hasher>::Digest>);
// MERKLE TREE IMPLEMENTATION
// ================================================================================================
impl<H: Hasher> MerkleTree<H> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns new Merkle tree built from the provide leaves using hash function specified by the
/// `H` generic parameter.
///
/// When `concurrent` feature is enabled, the tree is built using multiple threads.
///
/// # Errors
/// Returns an error if:
/// * Fewer than two leaves were provided.
/// * Number of leaves is not a power of two.
pub fn new(leaves: Vec<H::Digest>) -> Result<Self, MerkleTreeError> {
if leaves.len() < 2 {
return Err(MerkleTreeError::TooFewLeaves(2, leaves.len()));
}
if !leaves.len().is_power_of_two() {
return Err(MerkleTreeError::NumberOfLeavesNotPowerOfTwo(leaves.len()));
}
#[cfg(not(feature = "concurrent"))]
let nodes = build_merkle_nodes::<H>(&leaves);
#[cfg(feature = "concurrent")]
let nodes = if leaves.len() <= concurrent::MIN_CONCURRENT_LEAVES {
build_merkle_nodes::<H>(&leaves)
} else {
concurrent::build_merkle_nodes::<H>(&leaves)
};
Ok(MerkleTree { nodes, leaves })
}
/// Forms a MerkleTree from a list of nodes and leaves.
///
/// Nodes are supplied as a vector where the root is stored at position 1.
///
/// # Errors
/// Returns an error if:
/// * Fewer than two leaves were provided.
/// * Number of leaves is not a power of two.
///
/// # Panics
/// Panics if nodes doesn't have the same length as leaves.
pub fn from_raw_parts(
nodes: Vec<H::Digest>,
leaves: Vec<H::Digest>,
) -> Result<Self, MerkleTreeError> {
if leaves.len() < 2 {
return Err(MerkleTreeError::TooFewLeaves(2, leaves.len()));
}
if !leaves.len().is_power_of_two() {
return Err(MerkleTreeError::NumberOfLeavesNotPowerOfTwo(leaves.len()));
}
assert_eq!(nodes.len(), leaves.len());
Ok(MerkleTree { nodes, leaves })
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of the tree.
pub fn root(&self) -> &H::Digest {
&self.nodes[1]
}
/// Returns depth of the tree.
///
/// The depth of a tree is zero-based. Thus, a tree with two leaves has depth 1, a tree with
/// four leaves has depth 2 etc.
pub fn depth(&self) -> usize {
self.leaves.len().ilog2() as usize
}
/// Returns leaf nodes of the tree.
pub fn leaves(&self) -> &[H::Digest] {
&self.leaves
}
// PROVING METHODS
// --------------------------------------------------------------------------------------------
/// Returns a Merkle proof to a leaf at the specified `index`.
///
/// The leaf itself will be the first element of the returned tuple.
///
/// # Errors
/// Returns an error if the specified index is greater than or equal to the number of leaves
/// in the tree.
pub fn prove(&self, index: usize) -> Result<MerkleTreeOpening<H>, MerkleTreeError> {
if index >= self.leaves.len() {
return Err(MerkleTreeError::LeafIndexOutOfBounds(self.leaves.len(), index));
}
let leaf = self.leaves[index];
let mut proof = vec![self.leaves[index ^ 1]];
let mut index = (index + self.nodes.len()) >> 1;
while index > 1 {
proof.push(self.nodes[index ^ 1]);
index >>= 1;
}
Ok((leaf, proof))
}
/// Computes Merkle proofs for the provided indexes, compresses the proofs into a single batch
/// and returns the batch proof alongside the leaves at the provided indexes.
///
/// # Errors
/// Returns an error if:
/// * No indexes were provided (i.e., `indexes` is an empty slice).
/// * Any of the provided indexes are greater than or equal to the number of leaves in the
/// tree.
/// * List of indexes contains duplicates.
pub fn prove_batch(
&self,
indexes: &[usize],
) -> Result<(Vec<H::Digest>, BatchMerkleProof<H>), MerkleTreeError> {
if indexes.is_empty() {
return Err(MerkleTreeError::TooFewLeafIndexes);
}
let index_map = map_indexes(indexes, self.depth())?;
let indexes = normalize_indexes(indexes);
let mut leaves = vec![H::Digest::default(); index_map.len()];
let mut nodes: Vec<Vec<H::Digest>> = Vec::with_capacity(indexes.len());
// populate the proof with leaf node values
let n = self.leaves.len();
let mut next_indexes: Vec<usize> = Vec::new();
for index in indexes {
let missing: Vec<H::Digest> = (index..index + 2)
.flat_map(|i| {
let v = self.leaves[i];
if let Some(idx) = index_map.get(&i) {
leaves[*idx] = v;
None
} else {
Some(v)
}
})
.collect();
nodes.push(missing);
next_indexes.push((index + n) >> 1);
}
// add required internal nodes to the proof, skipping redundancies
for _ in 1..self.depth() {
let indexes = next_indexes.clone();
next_indexes.truncate(0);
let mut i = 0;
while i < indexes.len() {
let sibling_index = indexes[i] ^ 1;
if i + 1 < indexes.len() && indexes[i + 1] == sibling_index {
i += 1;
} else {
nodes[i].push(self.nodes[sibling_index]);
}
// add parent index to the set of next indexes
next_indexes.push(sibling_index >> 1);
i += 1;
}
}
Ok((leaves, BatchMerkleProof { depth: self.depth() as u8, nodes }))
}
// VERIFICATION METHODS
// --------------------------------------------------------------------------------------------
/// Checks whether the `proof` for the given `leaf` at the specified `index` is valid.
///
/// # Errors
/// Returns an error if the specified `proof` (which is a Merkle path) does not resolve to the
/// specified `root`.
pub fn verify(
root: H::Digest,
index: usize,
leaf: H::Digest,
proof: &[H::Digest],
) -> Result<(), MerkleTreeError> {
let r = index & 1;
let mut v = if r == 0 {
H::merge(&[leaf, proof[0]])
} else {
H::merge(&[proof[0], leaf])
};
let mut index = (index + 2usize.pow((proof.len()) as u32)) >> 1;
for &p in proof.iter().skip(1) {
v = if index & 1 == 0 {
H::merge(&[v, p])
} else {
H::merge(&[p, v])
};
index >>= 1;
}
if v != root {
return Err(MerkleTreeError::InvalidProof);
}
Ok(())
}
/// Checks whether the batch `proof` contains Merkle proofs resolving to `root` for
/// the provided `leaves` at the specified `indexes`.
///
/// # Errors
/// Returns an error if:
/// * No indexes were provided (i.e., `indexes` is an empty slice).
/// * Any of the specified `indexes` is greater than or equal to the number of leaves in the
/// tree from which the batch proof was generated.
/// * List of indexes contains duplicates.
/// * Any of the proofs in the batch proof does not resolve to the specified `root`.
pub fn verify_batch(
root: &H::Digest,
indexes: &[usize],
leaves: &[H::Digest],
proof: &BatchMerkleProof<H>,
) -> Result<(), MerkleTreeError> {
if *root != proof.get_root(indexes, leaves)? {
return Err(MerkleTreeError::InvalidProof);
}
Ok(())
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Returns the internal nodes of a Merkle tree defined by the specified leaves.
///
/// The internal nodes are turned as a vector where the root is stored at position 1, its children
/// are stored at positions 2, 3, their children are stored at positions 4, 5, 6, 7 etc.
///
/// This function is exposed primarily for benchmarking purposes. It is not intended to be used
/// directly by the end users of the crate.
pub fn build_merkle_nodes<H: Hasher>(leaves: &[H::Digest]) -> Vec<H::Digest> {
let n = leaves.len() / 2;
// create un-initialized array to hold all intermediate nodes
let mut nodes = unsafe { utils::uninit_vector::<H::Digest>(2 * n) };
nodes[0] = H::Digest::default();
// re-interpret leaves as an array of two leaves fused together
let two_leaves = unsafe { slice::from_raw_parts(leaves.as_ptr() as *const [H::Digest; 2], n) };
// build first row of internal nodes (parents of leaves)
for (i, j) in (0..n).zip(n..nodes.len()) {
nodes[j] = H::merge(&two_leaves[i]);
}
// re-interpret nodes as an array of two nodes fused together
let two_nodes = unsafe { slice::from_raw_parts(nodes.as_ptr() as *const [H::Digest; 2], n) };
// calculate all other tree nodes
for i in (1..n).rev() {
nodes[i] = H::merge(&two_nodes[i]);
}
nodes
}
fn map_indexes(
indexes: &[usize],
tree_depth: usize,
) -> Result<BTreeMap<usize, usize>, MerkleTreeError> {
let num_leaves = 2usize.pow(tree_depth as u32);
let mut map = BTreeMap::new();
for (i, index) in indexes.iter().cloned().enumerate() {
map.insert(index, i);
if index >= num_leaves {
return Err(MerkleTreeError::LeafIndexOutOfBounds(num_leaves, index));
}
}
if indexes.len() != map.len() {
return Err(MerkleTreeError::DuplicateLeafIndex);
}
Ok(map)
}
fn normalize_indexes(indexes: &[usize]) -> Vec<usize> {
let mut set = BTreeSet::new();
for &index in indexes {
set.insert(index - (index & 1));
}
set.into_iter().collect()
}
// VECTOR COMMITMENT IMPLEMENTATION
// ================================================================================================
impl<H: Hasher> VectorCommitment<H> for MerkleTree<H> {
type Options = ();
type Proof = Vec<H::Digest>;
type MultiProof = BatchMerkleProof<H>;
type Error = MerkleTreeError;
fn with_options(items: Vec<H::Digest>, _options: Self::Options) -> Result<Self, Self::Error> {
MerkleTree::new(items)
}
fn commitment(&self) -> H::Digest {
*self.root()
}
fn domain_len(&self) -> usize {
1 << self.depth()
}
fn get_proof_domain_len(proof: &Self::Proof) -> usize {
1 << proof.len()
}
fn get_multiproof_domain_len(proof: &Self::MultiProof) -> usize {
1 << proof.depth
}
fn open(&self, index: usize) -> Result<(H::Digest, Self::Proof), Self::Error> {
self.prove(index)
}
fn open_many(
&self,
indexes: &[usize],
) -> Result<(Vec<H::Digest>, Self::MultiProof), Self::Error> {
self.prove_batch(indexes)
}
fn verify(
commitment: H::Digest,
index: usize,
item: H::Digest,
proof: &Self::Proof,
) -> Result<(), Self::Error> {
MerkleTree::<H>::verify(commitment, index, item, proof)
}
fn verify_many(
commitment: H::Digest,
indexes: &[usize],
items: &[H::Digest],
proof: &Self::MultiProof,
) -> Result<(), Self::Error> {
MerkleTree::<H>::verify_batch(&commitment, indexes, items, proof)
}
}