1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use crate::air::Assertion;
use core::fmt::{Display, Formatter};
use math::{FieldElement, StarkField};
use utils::collections::Vec;
// CONSTRAINT DIVISOR
// ================================================================================================
/// The denominator portion of boundary and transition constraints.
///
/// A divisor is described by a combination of a sparse polynomial, which describes the numerator
/// of the divisor and a set of exemption points, which describe the denominator of the divisor.
/// The numerator polynomial is described as multiplication of tuples where each tuple encodes
/// an expression $(x^a - b)$. The exemption points encode expressions $(x - a)$.
///
/// For example divisor $(x^a - 1) \cdot (x^b - 2) / (x - 3)$ can be represented as:
/// numerator: `[(a, 1), (b, 2)]`, exemptions: `[3]`.
///
/// A divisor cannot be instantiated directly, and instead must be created either for an
/// [Assertion] or for a transition constraint.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ConstraintDivisor<B: StarkField> {
pub(super) numerator: Vec<(usize, B)>,
pub(super) exemptions: Vec<B>,
}
impl<B: StarkField> ConstraintDivisor<B> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new divisor instantiated from the provided parameters.
fn new(numerator: Vec<(usize, B)>, exemptions: Vec<B>) -> Self {
ConstraintDivisor {
numerator,
exemptions,
}
}
/// Builds a divisor for transition constraints.
///
/// For transition constraints, the divisor polynomial $z(x)$ is always the same:
///
/// $$
/// z(x) = \frac{x^n - 1}{ \prod_{i=1}^k (x - g^{n-i})}
/// $$
///
/// where, $n$ is the length of the execution trace, $g$ is the generator of the trace
/// domain, and $k$ is the number of exemption points. The default value for $k$ is $1$.
///
/// The above divisor specifies that transition constraints must hold on all steps of the
/// execution trace except for the last $k$ steps.
pub fn from_transition(trace_length: usize, num_exemptions: usize) -> Self {
assert!(
num_exemptions > 0,
"invalid number of transition exemptions: must be greater than zero"
);
let exemptions = (trace_length - num_exemptions..trace_length)
.map(|step| get_trace_domain_value_at::<B>(trace_length, step))
.collect();
Self::new(vec![(trace_length, B::ONE)], exemptions)
}
/// Builds a divisor for a boundary constraint described by the assertion.
///
/// For boundary constraints, the divisor polynomial is defined as:
///
/// $$
/// z(x) = x^k - g^{a \cdot k}
/// $$
///
/// where $g$ is the generator of the trace domain, $k$ is the number of asserted steps, and
/// $a$ is the step offset in the trace domain. Specifically:
/// * For an assertion against a single step, the polynomial is $(x - g^a)$, where $a$ is the
/// step on which the assertion should hold.
/// * For an assertion against a sequence of steps which fall on powers of two, it is
/// $(x^k - 1)$ where $k$ is the number of asserted steps.
/// * For assertions against a sequence of steps which repeat with a period that is a power
/// of two but don't fall exactly on steps which are powers of two (e.g. 1, 9, 17, ... )
/// it is $(x^k - g^{a \cdot k})$, where $a$ is the number of steps by which the assertion steps
/// deviate from a power of two, and $k$ is the number of asserted steps. This is equivalent to
/// $(x - g^a) \cdot (x - g^{a + j}) \cdot (x - g^{a + 2 \cdot j}) ... (x - g^{a + (k - 1) \cdot j})$,
/// where $j$ is the length of interval between asserted steps (e.g. 8).
///
/// # Panics
/// Panics of the specified `trace_length` is inconsistent with the specified `assertion`.
pub fn from_assertion<E>(assertion: &Assertion<E>, trace_length: usize) -> Self
where
E: FieldElement<BaseField = B>,
{
let num_steps = assertion.get_num_steps(trace_length);
if assertion.first_step == 0 {
Self::new(vec![(num_steps, B::ONE)], vec![])
} else {
let trace_offset = num_steps * assertion.first_step;
let offset = get_trace_domain_value_at::<B>(trace_length, trace_offset);
Self::new(vec![(num_steps, offset)], vec![])
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the numerator portion of this constraint divisor.
pub fn numerator(&self) -> &[(usize, B)] {
&self.numerator
}
/// Returns exemption points (the denominator portion) of this constraints divisor.
pub fn exemptions(&self) -> &[B] {
&self.exemptions
}
/// Returns the degree of the divisor polynomial
pub fn degree(&self) -> usize {
let numerator_degree = self.numerator.iter().fold(0, |degree, term| degree + term.0);
let denominator_degree = self.exemptions.len();
numerator_degree - denominator_degree
}
// EVALUATORS
// --------------------------------------------------------------------------------------------
/// Evaluates the divisor polynomial at the provided `x` coordinate.
pub fn evaluate_at<E: FieldElement<BaseField = B>>(&self, x: E) -> E {
// compute the numerator value
let mut numerator = E::ONE;
for (degree, constant) in self.numerator.iter() {
let v = x.exp((*degree as u32).into());
let v = v - E::from(*constant);
numerator *= v;
}
// compute the denominator value
let denominator = self.evaluate_exemptions_at(x);
numerator / denominator
}
/// Evaluates the denominator of this divisor (the exemption points) at the provided `x`
/// coordinate.
#[inline(always)]
pub fn evaluate_exemptions_at<E: FieldElement<BaseField = B>>(&self, x: E) -> E {
self.exemptions.iter().fold(E::ONE, |r, &e| r * (x - E::from(e)))
}
}
impl<B: StarkField> Display for ConstraintDivisor<B> {
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
for (degree, offset) in self.numerator.iter() {
write!(f, "(x^{degree} - {offset})")?;
}
if !self.exemptions.is_empty() {
write!(f, " / ")?;
for x in self.exemptions.iter() {
write!(f, "(x - {x})")?;
}
}
Ok(())
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Returns g^step, where g is the generator of trace domain.
fn get_trace_domain_value_at<B: StarkField>(trace_length: usize, step: usize) -> B {
debug_assert!(step < trace_length, "step must be in the trace domain [0, {trace_length})");
let g = B::get_root_of_unity(trace_length.ilog2());
g.exp((step as u64).into())
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::*;
use math::{fields::f128::BaseElement, polynom};
#[test]
fn constraint_divisor_degree() {
// single term numerator
let div = ConstraintDivisor::new(vec![(4, BaseElement::ONE)], vec![]);
assert_eq!(4, div.degree());
// multi-term numerator
let div = ConstraintDivisor::new(
vec![(4, BaseElement::ONE), (2, BaseElement::new(2)), (3, BaseElement::new(3))],
vec![],
);
assert_eq!(9, div.degree());
// multi-term numerator with exemption points
let div = ConstraintDivisor::new(
vec![(4, BaseElement::ONE), (2, BaseElement::new(2)), (3, BaseElement::new(3))],
vec![BaseElement::ONE, BaseElement::new(2)],
);
assert_eq!(7, div.degree());
}
#[test]
fn constraint_divisor_evaluation() {
// single term numerator: (x^4 - 1)
let div = ConstraintDivisor::new(vec![(4, BaseElement::ONE)], vec![]);
assert_eq!(BaseElement::new(15), div.evaluate_at(BaseElement::new(2)));
// multi-term numerator: (x^4 - 1) * (x^2 - 2) * (x^3 - 3)
let div = ConstraintDivisor::new(
vec![(4, BaseElement::ONE), (2, BaseElement::new(2)), (3, BaseElement::new(3))],
vec![],
);
let expected = BaseElement::new(15) * BaseElement::new(2) * BaseElement::new(5);
assert_eq!(expected, div.evaluate_at(BaseElement::new(2)));
// multi-term numerator with exemption points:
// (x^4 - 1) * (x^2 - 2) * (x^3 - 3) / ((x - 1) * (x - 2))
let div = ConstraintDivisor::new(
vec![(4, BaseElement::ONE), (2, BaseElement::new(2)), (3, BaseElement::new(3))],
vec![BaseElement::ONE, BaseElement::new(2)],
);
let expected = BaseElement::new(255) * BaseElement::new(14) * BaseElement::new(61)
/ BaseElement::new(6);
assert_eq!(expected, div.evaluate_at(BaseElement::new(4)));
}
#[test]
fn constraint_divisor_equivalence() {
let n = 8_usize;
let g = BaseElement::get_root_of_unity(n.trailing_zeros());
let k = 4_u32;
let j = n as u32 / k;
// ----- periodic assertion divisor, no offset --------------------------------------------
// create a divisor for assertion which repeats every 2 steps starting at step 0
let assertion = Assertion::periodic(0, 0, j as usize, BaseElement::ONE);
let divisor = ConstraintDivisor::from_assertion(&assertion, n);
// z(x) = x^4 - 1 = (x - 1) * (x - g^2) * (x - g^4) * (x - g^6)
let poly = polynom::mul(
&polynom::mul(
&[-BaseElement::ONE, BaseElement::ONE],
&[-g.exp(j.into()), BaseElement::ONE],
),
&polynom::mul(
&[-g.exp((2 * j).into()), BaseElement::ONE],
&[-g.exp((3 * j).into()), BaseElement::ONE],
),
);
for i in 0..n {
let expected = polynom::eval(&poly, g.exp((i as u32).into()));
let actual = divisor.evaluate_at(g.exp((i as u32).into()));
assert_eq!(expected, actual);
if i % (j as usize) == 0 {
assert_eq!(BaseElement::ZERO, actual);
}
}
// ----- periodic assertion divisor, with offset ------------------------------------------
// create a divisor for assertion which repeats every 2 steps starting at step 1
let offset = 1_u32;
let assertion = Assertion::periodic(0, offset as usize, j as usize, BaseElement::ONE);
let divisor = ConstraintDivisor::from_assertion(&assertion, n);
assert_eq!(ConstraintDivisor::new(vec![(k as usize, g.exp(k.into()))], vec![]), divisor);
// z(x) = x^4 - g^4 = (x - g) * (x - g^3) * (x - g^5) * (x - g^7)
let poly = polynom::mul(
&polynom::mul(
&[-g.exp(offset.into()), BaseElement::ONE],
&[-g.exp((offset + j).into()), BaseElement::ONE],
),
&polynom::mul(
&[-g.exp((offset + 2 * j).into()), BaseElement::ONE],
&[-g.exp((offset + 3 * j).into()), BaseElement::ONE],
),
);
for i in 0..n {
let expected = polynom::eval(&poly, g.exp((i as u32).into()));
let actual = divisor.evaluate_at(g.exp((i as u32).into()));
assert_eq!(expected, actual);
if i % (j as usize) == offset as usize {
assert_eq!(BaseElement::ZERO, actual);
}
}
// create a divisor for assertion which repeats every 4 steps starting at step 3
let offset = 3_u32;
let k = 2_u32;
let j = n as u32 / k;
let assertion = Assertion::periodic(0, offset as usize, j as usize, BaseElement::ONE);
let divisor = ConstraintDivisor::from_assertion(&assertion, n);
assert_eq!(
ConstraintDivisor::new(vec![(k as usize, g.exp((offset * k).into()))], vec![]),
divisor
);
// z(x) = x^2 - g^6 = (x - g^3) * (x - g^7)
let poly = polynom::mul(
&[-g.exp(offset.into()), BaseElement::ONE],
&[-g.exp((offset + j).into()), BaseElement::ONE],
);
for i in 0..n {
let expected = polynom::eval(&poly, g.exp((i as u32).into()));
let actual = divisor.evaluate_at(g.exp((i as u32).into()));
assert_eq!(expected, actual);
if i % (j as usize) == offset as usize {
assert_eq!(BaseElement::ZERO, actual);
}
}
}
}