1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use super::{AirContext, BTreeMap, ConstraintDivisor, ExtensionOf, FieldElement, Vec};

mod frame;
pub use frame::EvaluationFrame;

mod degree;
pub use degree::TransitionConstraintDegree;

// CONSTANTS
// ================================================================================================

const MIN_CYCLE_LENGTH: usize = 2;

// TRANSITION CONSTRAINT INFO
// ================================================================================================
/// Metadata for transition constraints of a computation.
///
/// This metadata includes:
/// - List of transition constraint degrees for the main trace segment, as well as for auxiliary
///   trace segments (if any).
/// - Groupings of constraints by their degree, separately for the main trace segment and for
///   auxiliary tace segment.
/// - Divisor of transition constraints for a computation.
pub struct TransitionConstraints<E: FieldElement> {
    main_constraints: Vec<TransitionConstraintGroup<E>>,
    main_constraint_degrees: Vec<TransitionConstraintDegree>,
    aux_constraints: Vec<TransitionConstraintGroup<E>>,
    aux_constraint_degrees: Vec<TransitionConstraintDegree>,
    divisor: ConstraintDivisor<E::BaseField>,
}

impl<E: FieldElement> TransitionConstraints<E> {
    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new instance of [TransitionConstraints] for a computation described by the
    /// specified AIR context.
    ///
    /// # Panics
    /// Panics if the number of transition constraints in the context does not match the number of
    /// provided composition coefficients.
    pub fn new(context: &AirContext<E::BaseField>, composition_coefficients: &[(E, E)]) -> Self {
        assert_eq!(
            context.num_transition_constraints(),
            composition_coefficients.len(),
            "number of transition constraints must match the number of composition coefficient tuples"
        );

        // build constraint divisor; the same divisor applies to all transition constraints
        let divisor = ConstraintDivisor::from_transition(
            context.trace_len(),
            context.num_transition_exemptions(),
        );

        // group constraints by their degree, separately for constraints against main and auxiliary
        // trace segments

        let (main_constraint_coefficients, aux_constraint_coefficients) =
            composition_coefficients.split_at(context.main_transition_constraint_degrees.len());

        let main_constraint_degrees = context.main_transition_constraint_degrees.clone();
        let main_constraints = group_constraints(
            &main_constraint_degrees,
            context,
            main_constraint_coefficients,
            divisor.degree(),
        );
        let aux_constraint_degrees = context.aux_transition_constraint_degrees.clone();
        let aux_constraints = group_constraints(
            &aux_constraint_degrees,
            context,
            aux_constraint_coefficients,
            divisor.degree(),
        );

        Self {
            main_constraints,
            main_constraint_degrees,
            aux_constraints,
            aux_constraint_degrees,
            divisor,
        }
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns transition constraint info for constraints applied against the main trace segment
    /// of a computation grouped by constraint degree.
    pub fn main_constraints(&self) -> &[TransitionConstraintGroup<E>] {
        &self.main_constraints
    }

    /// Returns a list of transition constraint degree descriptors for the main trace segment of
    /// a computation.
    ///
    /// This list will be identical to the list passed into the [AirContext::new()] method as
    /// the `transition_constraint_degrees` parameter, or into [AirContext::new_multi_segment()]
    /// as the `main_transition_constraint_degrees` parameter.
    pub fn main_constraint_degrees(&self) -> &[TransitionConstraintDegree] {
        &self.main_constraint_degrees
    }

    /// Returns the number of constraints applied against the main trace segment of a computation.
    pub fn num_main_constraints(&self) -> usize {
        self.main_constraint_degrees.len()
    }

    /// Returns transition constraint info for constraints applied against auxiliary trace segments
    /// of a computation grouped by constraint degree.
    pub fn aux_constraints(&self) -> &[TransitionConstraintGroup<E>] {
        &self.aux_constraints
    }

    /// Returns a list of transition constraint degree descriptors for auxiliary trace segments of
    /// a computation.
    ///
    /// This list will be identical to the list passed into [AirContext::new_multi_segment()]
    /// as the `aux_transition_constraint_degrees` parameter.
    pub fn aux_constraint_degrees(&self) -> &[TransitionConstraintDegree] {
        &self.aux_constraint_degrees
    }

    /// Returns the number of constraints applied against auxiliary trace segments of a
    /// computation.
    pub fn num_aux_constraints(&self) -> usize {
        self.aux_constraint_degrees.len()
    }

    /// Returns a divisor for transition constraints.
    ///
    /// All transition constraints have the same divisor which has the form:
    /// $$
    /// z(x) = \frac{x^n - 1}{x - g^{n - 1}}
    /// $$
    /// where: $n$ is the length of the execution trace and $g$ is the generator of the trace
    /// domain.
    ///
    /// This divisor specifies that transition constraints must hold on all steps of the
    /// execution trace except for the last one.
    pub fn divisor(&self) -> &ConstraintDivisor<E::BaseField> {
        &self.divisor
    }

    // CONSTRAINT COMPOSITION
    // --------------------------------------------------------------------------------------------

    /// Computes a linear combination of all transition constraint evaluations and divides the
    /// result by transition constraint divisor.
    ///
    /// A transition constraint is described by a rational function of the form $\frac{C(x)}{z(x)}$,
    /// where:
    /// * $C(x)$ is the constraint polynomial.
    /// * $z(x)$ is the constraint divisor polynomial.
    ///
    /// Thus, this function computes a linear combination of $C(x)$ evaluations. For more detail on
    ///  how this linear combination is computed refer to [TransitionConstraintGroup::merge_evaluations].
    ///
    /// Since, the divisor polynomial is the same for all transition constraints (see
    /// [ConstraintDivisor::from_transition]), we can divide the linear combination by the
    /// divisor rather than dividing each individual $C(x)$ evaluation. This requires executing only
    /// one division at the end.
    pub fn combine_evaluations<F>(&self, main_evaluations: &[F], aux_evaluations: &[E], x: F) -> E
    where
        F: FieldElement<BaseField = E::BaseField>,
        E: ExtensionOf<F>,
    {
        // merge constraint evaluations for the main trace segment
        let mut result = self.main_constraints().iter().fold(E::ZERO, |acc, group| {
            acc + group.merge_evaluations::<F, F>(main_evaluations, x)
        });

        // merge constraint evaluations for auxiliary trace segments (if any)
        if self.num_aux_constraints() > 0 {
            result += self.aux_constraints().iter().fold(E::ZERO, |acc, group| {
                acc + group.merge_evaluations::<F, E>(aux_evaluations, x)
            });
        }

        // divide out the evaluation of divisor at x and return the result
        let z = E::from(self.divisor.evaluate_at(x));
        result / z
    }
}

// TRANSITION CONSTRAINT GROUP
// ================================================================================================
/// A group of transition constraints all having the same degree.
///
/// A transition constraint group does not actually store transition constraints - it stores only
/// their indexes and the info needed to compute their random linear combination. The indexes are
/// assumed to be consistent with the order in which constraint evaluations are written into the
/// `evaluation` table by the [Air::evaluate_transition()](crate::Air::evaluate_transition) or
/// [Air::evaluate_aux_transition()](crate::Air::evaluate_aux_transition) function.
#[derive(Clone, Debug)]
pub struct TransitionConstraintGroup<E: FieldElement> {
    degree: TransitionConstraintDegree,
    degree_adjustment: u32,
    indexes: Vec<usize>,
    coefficients: Vec<(E, E)>,
}

impl<E: FieldElement> TransitionConstraintGroup<E> {
    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new transition constraint group to hold constraints of the specified degree.
    pub(super) fn new(
        degree: TransitionConstraintDegree,
        trace_length: usize,
        composition_degree: usize,
        divisor_degree: usize,
    ) -> Self {
        // We want to make sure that once we divide a constraint polynomial by its divisor, the
        // degree of the resulting polynomial will be exactly equal to the composition_degree.
        let target_degree = composition_degree + divisor_degree;
        let evaluation_degree = degree.get_evaluation_degree(trace_length);
        let degree_adjustment = (target_degree - evaluation_degree) as u32;
        TransitionConstraintGroup {
            degree,
            degree_adjustment,
            indexes: vec![],
            coefficients: vec![],
        }
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns indexes of all constraints in this group.
    pub fn indexes(&self) -> &[usize] {
        &self.indexes
    }

    /// Returns degree descriptors for all constraints in this group.
    pub fn degree(&self) -> &TransitionConstraintDegree {
        &self.degree
    }

    /// Adds a new constraint to the group. The constraint is identified by an index in the
    /// evaluation table.
    pub fn add(&mut self, constraint_idx: usize, coefficients: (E, E)) {
        self.indexes.push(constraint_idx);
        self.coefficients.push(coefficients);
    }

    // EVALUATOR
    // --------------------------------------------------------------------------------------------
    /// Computes a linear combination of evaluations relevant to this constraint group.
    ///
    /// The linear combination is computed as follows:
    /// $$
    /// \sum_{i=0}^{k-1}{C_i(x) \cdot (\alpha_i + \beta_i \cdot x^d)}
    /// $$
    /// where:
    /// * $C_i(x)$ is the evaluation of the $i$th constraint at `x` (same as `evaluations[i]`).
    /// * $\alpha$ and $\beta$ are random field elements. In the interactive version of the
    ///   protocol, these are provided by the verifier.
    /// * $d$ is the degree adjustment factor computed as $D + (n - 1) - deg(C_i(x))$, where
    ///   $D$ is the degree of the composition polynomial, $n$ is the length of the execution
    ///   trace, and $deg(C_i(x))$ is the evaluation degree of the $i$th constraint.
    ///
    /// There are two things to note here. First, the degree adjustment factor $d$ is the same
    /// for all constraints in the group (since all constraints have the same degree). Second,
    /// the merged evaluations represent a polynomial of degree $D + n - 1$, which is higher
    /// then the target degree of the composition polynomial. This is because at this stage,
    /// we are merging only the numerators of transition constraints, and we will need to divide
    /// them by the divisor later on. The degree of the divisor for transition constraints is
    /// always $n - 1$. Thus, once we divide out the divisor, the evaluations will represent a
    /// polynomial of degree $D$.
    pub fn merge_evaluations<B, F>(&self, evaluations: &[F], x: B) -> E
    where
        B: FieldElement,
        F: FieldElement<BaseField = B::BaseField> + ExtensionOf<B>,
        E: FieldElement<BaseField = B::BaseField> + ExtensionOf<B> + ExtensionOf<F>,
    {
        // compute degree adjustment factor for this group
        let xp = x.exp(self.degree_adjustment.into());

        // compute linear combination of evaluations as D(x) * (cc_0 + cc_1 * x^p), where D(x)
        // is an evaluation of a particular constraint, and x^p is the degree adjustment factor
        let mut result = E::ZERO;
        for (&constraint_idx, coefficients) in self.indexes.iter().zip(self.coefficients.iter()) {
            let evaluation = evaluations[constraint_idx];
            result += (coefficients.0 + coefficients.1.mul_base(xp)).mul_base(evaluation);
        }
        result
    }
}

// HELPER FUNCTIONS
// ================================================================================================

/// Groups transition constraints by their degree.
fn group_constraints<E: FieldElement>(
    degrees: &[TransitionConstraintDegree],
    context: &AirContext<E::BaseField>,
    coefficients: &[(E, E)],
    divisor_degree: usize,
) -> Vec<TransitionConstraintGroup<E>> {
    // iterate over transition constraint degrees, and assign each constraint to the appropriate
    // group based on its degree
    let mut groups = BTreeMap::new();
    for (i, degree) in degrees.iter().enumerate() {
        let evaluation_degree = degree.get_evaluation_degree(context.trace_len());
        let group = groups.entry(evaluation_degree).or_insert_with(|| {
            TransitionConstraintGroup::new(
                degree.clone(),
                context.trace_len(),
                context.composition_degree(),
                divisor_degree,
            )
        });
        group.add(i, coefficients[i]);
    }

    // convert from hash map into a vector and return
    groups.into_iter().map(|e| e.1).collect()
}