1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use super::{AirContext, BTreeMap, ConstraintDivisor, ExtensionOf, FieldElement, Vec};
mod frame;
pub use frame::EvaluationFrame;
mod degree;
pub use degree::TransitionConstraintDegree;
// CONSTANTS
// ================================================================================================
const MIN_CYCLE_LENGTH: usize = 2;
// TRANSITION CONSTRAINT INFO
// ================================================================================================
/// Metadata for transition constraints of a computation.
///
/// This metadata includes:
/// - List of transition constraint degrees for the main trace segment, as well as for auxiliary
/// trace segments (if any).
/// - Groupings of constraints by their degree, separately for the main trace segment and for
/// auxiliary tace segment.
/// - Divisor of transition constraints for a computation.
pub struct TransitionConstraints<E: FieldElement> {
main_constraints: Vec<TransitionConstraintGroup<E>>,
main_constraint_degrees: Vec<TransitionConstraintDegree>,
aux_constraints: Vec<TransitionConstraintGroup<E>>,
aux_constraint_degrees: Vec<TransitionConstraintDegree>,
divisor: ConstraintDivisor<E::BaseField>,
}
impl<E: FieldElement> TransitionConstraints<E> {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns a new instance of [TransitionConstraints] for a computation described by the
/// specified AIR context.
///
/// # Panics
/// Panics if the number of transition constraints in the context does not match the number of
/// provided composition coefficients.
pub fn new(context: &AirContext<E::BaseField>, composition_coefficients: &[(E, E)]) -> Self {
assert_eq!(
context.num_transition_constraints(),
composition_coefficients.len(),
"number of transition constraints must match the number of composition coefficient tuples"
);
// build constraint divisor; the same divisor applies to all transition constraints
let divisor = ConstraintDivisor::from_transition(
context.trace_len(),
context.num_transition_exemptions(),
);
// group constraints by their degree, separately for constraints against main and auxiliary
// trace segments
let (main_constraint_coefficients, aux_constraint_coefficients) =
composition_coefficients.split_at(context.main_transition_constraint_degrees.len());
let main_constraint_degrees = context.main_transition_constraint_degrees.clone();
let main_constraints = group_constraints(
&main_constraint_degrees,
context,
main_constraint_coefficients,
divisor.degree(),
);
let aux_constraint_degrees = context.aux_transition_constraint_degrees.clone();
let aux_constraints = group_constraints(
&aux_constraint_degrees,
context,
aux_constraint_coefficients,
divisor.degree(),
);
Self {
main_constraints,
main_constraint_degrees,
aux_constraints,
aux_constraint_degrees,
divisor,
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns transition constraint info for constraints applied against the main trace segment
/// of a computation grouped by constraint degree.
pub fn main_constraints(&self) -> &[TransitionConstraintGroup<E>] {
&self.main_constraints
}
/// Returns a list of transition constraint degree descriptors for the main trace segment of
/// a computation.
///
/// This list will be identical to the list passed into the [AirContext::new()] method as
/// the `transition_constraint_degrees` parameter, or into [AirContext::new_multi_segment()]
/// as the `main_transition_constraint_degrees` parameter.
pub fn main_constraint_degrees(&self) -> &[TransitionConstraintDegree] {
&self.main_constraint_degrees
}
/// Returns the number of constraints applied against the main trace segment of a computation.
pub fn num_main_constraints(&self) -> usize {
self.main_constraint_degrees.len()
}
/// Returns transition constraint info for constraints applied against auxiliary trace segments
/// of a computation grouped by constraint degree.
pub fn aux_constraints(&self) -> &[TransitionConstraintGroup<E>] {
&self.aux_constraints
}
/// Returns a list of transition constraint degree descriptors for auxiliary trace segments of
/// a computation.
///
/// This list will be identical to the list passed into [AirContext::new_multi_segment()]
/// as the `aux_transition_constraint_degrees` parameter.
pub fn aux_constraint_degrees(&self) -> &[TransitionConstraintDegree] {
&self.aux_constraint_degrees
}
/// Returns the number of constraints applied against auxiliary trace segments of a
/// computation.
pub fn num_aux_constraints(&self) -> usize {
self.aux_constraint_degrees.len()
}
/// Returns a divisor for transition constraints.
///
/// All transition constraints have the same divisor which has the form:
/// $$
/// z(x) = \frac{x^n - 1}{x - g^{n - 1}}
/// $$
/// where: $n$ is the length of the execution trace and $g$ is the generator of the trace
/// domain.
///
/// This divisor specifies that transition constraints must hold on all steps of the
/// execution trace except for the last one.
pub fn divisor(&self) -> &ConstraintDivisor<E::BaseField> {
&self.divisor
}
// CONSTRAINT COMPOSITION
// --------------------------------------------------------------------------------------------
/// Computes a linear combination of all transition constraint evaluations and divides the
/// result by transition constraint divisor.
///
/// A transition constraint is described by a rational function of the form $\frac{C(x)}{z(x)}$,
/// where:
/// * $C(x)$ is the constraint polynomial.
/// * $z(x)$ is the constraint divisor polynomial.
///
/// Thus, this function computes a linear combination of $C(x)$ evaluations. For more detail on
/// how this linear combination is computed refer to [TransitionConstraintGroup::merge_evaluations].
///
/// Since, the divisor polynomial is the same for all transition constraints (see
/// [ConstraintDivisor::from_transition]), we can divide the linear combination by the
/// divisor rather than dividing each individual $C(x)$ evaluation. This requires executing only
/// one division at the end.
pub fn combine_evaluations<F>(&self, main_evaluations: &[F], aux_evaluations: &[E], x: F) -> E
where
F: FieldElement<BaseField = E::BaseField>,
E: ExtensionOf<F>,
{
// merge constraint evaluations for the main trace segment
let mut result = self.main_constraints().iter().fold(E::ZERO, |acc, group| {
acc + group.merge_evaluations::<F, F>(main_evaluations, x)
});
// merge constraint evaluations for auxiliary trace segments (if any)
if self.num_aux_constraints() > 0 {
result += self.aux_constraints().iter().fold(E::ZERO, |acc, group| {
acc + group.merge_evaluations::<F, E>(aux_evaluations, x)
});
}
// divide out the evaluation of divisor at x and return the result
let z = E::from(self.divisor.evaluate_at(x));
result / z
}
}
// TRANSITION CONSTRAINT GROUP
// ================================================================================================
/// A group of transition constraints all having the same degree.
///
/// A transition constraint group does not actually store transition constraints - it stores only
/// their indexes and the info needed to compute their random linear combination. The indexes are
/// assumed to be consistent with the order in which constraint evaluations are written into the
/// `evaluation` table by the [Air::evaluate_transition()](crate::Air::evaluate_transition) or
/// [Air::evaluate_aux_transition()](crate::Air::evaluate_aux_transition) function.
#[derive(Clone, Debug)]
pub struct TransitionConstraintGroup<E: FieldElement> {
degree: TransitionConstraintDegree,
degree_adjustment: u32,
indexes: Vec<usize>,
coefficients: Vec<(E, E)>,
}
impl<E: FieldElement> TransitionConstraintGroup<E> {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns a new transition constraint group to hold constraints of the specified degree.
pub(super) fn new(
degree: TransitionConstraintDegree,
trace_length: usize,
composition_degree: usize,
divisor_degree: usize,
) -> Self {
// We want to make sure that once we divide a constraint polynomial by its divisor, the
// degree of the resulting polynomial will be exactly equal to the composition_degree.
let target_degree = composition_degree + divisor_degree;
let evaluation_degree = degree.get_evaluation_degree(trace_length);
let degree_adjustment = (target_degree - evaluation_degree) as u32;
TransitionConstraintGroup {
degree,
degree_adjustment,
indexes: vec![],
coefficients: vec![],
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns indexes of all constraints in this group.
pub fn indexes(&self) -> &[usize] {
&self.indexes
}
/// Returns degree descriptors for all constraints in this group.
pub fn degree(&self) -> &TransitionConstraintDegree {
&self.degree
}
/// Adds a new constraint to the group. The constraint is identified by an index in the
/// evaluation table.
pub fn add(&mut self, constraint_idx: usize, coefficients: (E, E)) {
self.indexes.push(constraint_idx);
self.coefficients.push(coefficients);
}
// EVALUATOR
// --------------------------------------------------------------------------------------------
/// Computes a linear combination of evaluations relevant to this constraint group.
///
/// The linear combination is computed as follows:
/// $$
/// \sum_{i=0}^{k-1}{C_i(x) \cdot (\alpha_i + \beta_i \cdot x^d)}
/// $$
/// where:
/// * $C_i(x)$ is the evaluation of the $i$th constraint at `x` (same as `evaluations[i]`).
/// * $\alpha$ and $\beta$ are random field elements. In the interactive version of the
/// protocol, these are provided by the verifier.
/// * $d$ is the degree adjustment factor computed as $D + (n - 1) - deg(C_i(x))$, where
/// $D$ is the degree of the composition polynomial, $n$ is the length of the execution
/// trace, and $deg(C_i(x))$ is the evaluation degree of the $i$th constraint.
///
/// There are two things to note here. First, the degree adjustment factor $d$ is the same
/// for all constraints in the group (since all constraints have the same degree). Second,
/// the merged evaluations represent a polynomial of degree $D + n - 1$, which is higher
/// then the target degree of the composition polynomial. This is because at this stage,
/// we are merging only the numerators of transition constraints, and we will need to divide
/// them by the divisor later on. The degree of the divisor for transition constraints is
/// always $n - 1$. Thus, once we divide out the divisor, the evaluations will represent a
/// polynomial of degree $D$.
pub fn merge_evaluations<B, F>(&self, evaluations: &[F], x: B) -> E
where
B: FieldElement,
F: FieldElement<BaseField = B::BaseField> + ExtensionOf<B>,
E: FieldElement<BaseField = B::BaseField> + ExtensionOf<B> + ExtensionOf<F>,
{
// compute degree adjustment factor for this group
let xp = x.exp(self.degree_adjustment.into());
// compute linear combination of evaluations as D(x) * (cc_0 + cc_1 * x^p), where D(x)
// is an evaluation of a particular constraint, and x^p is the degree adjustment factor
let mut result = E::ZERO;
for (&constraint_idx, coefficients) in self.indexes.iter().zip(self.coefficients.iter()) {
let evaluation = evaluations[constraint_idx];
result += (coefficients.0 + coefficients.1.mul_base(xp)).mul_base(evaluation);
}
result
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Groups transition constraints by their degree.
fn group_constraints<E: FieldElement>(
degrees: &[TransitionConstraintDegree],
context: &AirContext<E::BaseField>,
coefficients: &[(E, E)],
divisor_degree: usize,
) -> Vec<TransitionConstraintGroup<E>> {
// iterate over transition constraint degrees, and assign each constraint to the appropriate
// group based on its degree
let mut groups = BTreeMap::new();
for (i, degree) in degrees.iter().enumerate() {
let evaluation_degree = degree.get_evaluation_degree(context.trace_len());
let group = groups.entry(evaluation_degree).or_insert_with(|| {
TransitionConstraintGroup::new(
degree.clone(),
context.trace_len(),
context.composition_degree(),
divisor_degree,
)
});
group.add(i, coefficients[i]);
}
// convert from hash map into a vector and return
groups.into_iter().map(|e| e.1).collect()
}