Crate windows_rpc

Crate windows_rpc 

Source
Expand description

Windows RPC client and server library for Rust.

This crate, together with windows_rpc_macros, provides a way to define Windows RPC interfaces using Rust traits and automatically generate all the necessary client and server code. The generated code handles NDR (Network Data Representation) marshalling, format strings, and Windows RPC runtime integration.

§Features

  • Simple trait-based interface definition - Define RPC interfaces using familiar Rust syntax
  • Automatic code generation - Client and server code generated at compile time
  • Type safety - Full Rust type system integration
  • NDR marshalling - Automatic Network Data Representation encoding/decoding
  • String support - Native handling of string parameters and return values
  • Integer types - Support for i8, i16, i32, i64, u8, u16, u32, u64
  • ALPC protocol - Fast local RPC using Advanced Local Procedure Call

§Quick Start

Define an RPC interface as a trait with the rpc_interface macro:

use windows_rpc::rpc_interface;
use windows_rpc::{ProtocolSequence, client_binding::ClientBinding};

#[rpc_interface(guid(0x12345678_1234_1234_1234_123456789abc), version(1.0))]
trait Calculator {
    fn add(a: i32, b: i32) -> i32;
    fn multiply(x: i32, y: i32) -> i32;
    fn strlen(string: &str) -> u64;
    fn greet(name: &str) -> String;
}

This generates three types:

  • CalculatorClient - for making RPC calls
  • CalculatorServerImpl - trait to implement for the server
  • CalculatorServer<T> - generic server wrapper for RPC dispatch

§Server Example

Implement the generated ServerImpl trait with static methods:

use windows_rpc::rpc_interface;

#[rpc_interface(guid(0x12345678_1234_1234_1234_123456789abc), version(1.0))]
trait Calculator {
    fn add(a: i32, b: i32) -> i32;
    fn greet(name: &str) -> String;
}

struct CalculatorImpl;

impl CalculatorServerImpl for CalculatorImpl {
    fn add(a: i32, b: i32) -> i32 {
        a + b
    }

    fn greet(name: &str) -> String {
        format!("Hello, {}!", name)
    }
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create server with the implementation type
    let mut server = CalculatorServer::<CalculatorImpl>::new();
    server.register("calculator_endpoint")?;

    // Non-blocking: returns immediately, processes calls in background
    server.listen_async()?;

    println!("Server is running...");

    // Keep the server running
    std::thread::sleep(std::time::Duration::from_secs(60));

    // Clean shutdown
    server.stop()?;
    Ok(())
}

§Client Example

Make RPC calls using the generated client:

use windows_rpc::rpc_interface;
use windows_rpc::{ProtocolSequence, client_binding::ClientBinding};

#[rpc_interface(guid(0x12345678_1234_1234_1234_123456789abc), version(1.0))]
trait Calculator {
    fn add(a: i32, b: i32) -> i32;
    fn greet(name: &str) -> String;
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a client binding
    let binding = ClientBinding::new(ProtocolSequence::Alpc, "calculator_endpoint")?;
    let client = CalculatorClient::new(binding);

    // Make RPC calls - integers
    let result = client.add(10, 20);
    println!("10 + 20 = {result}");  // Prints: 10 + 20 = 30

    // Make RPC calls - strings
    let greeting = client.greet("Alice");
    println!("{greeting}");  // Prints: Hello, Alice!

    Ok(())
}

§Complete Example with String Operations

Here’s a more comprehensive example showcasing various string operations:

use windows_rpc::{rpc_interface, ProtocolSequence, client_binding::ClientBinding};

#[rpc_interface(guid(0xabcdef12_3456_7890_abcd_ef1234567890), version(1.0))]
trait StringService {
    fn to_uppercase(text: &str) -> String;
    fn reverse(text: &str) -> String;
    fn count_words(text: &str) -> u32;
    fn concat(a: &str, b: &str) -> String;
}

struct StringServiceImpl;

impl StringServiceServerImpl for StringServiceImpl {
    fn to_uppercase(text: &str) -> String {
        text.to_uppercase()
    }

    fn reverse(text: &str) -> String {
        text.chars().rev().collect()
    }

    fn count_words(text: &str) -> u32 {
        text.split_whitespace().count() as u32
    }

    fn concat(a: &str, b: &str) -> String {
        format!("{}{}", a, b)
    }
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Start server
    let mut server = StringServiceServer::<StringServiceImpl>::new();
    server.register("string_service")?;
    server.listen_async()?;

    // Create client
    let client = StringServiceClient::new(
        ClientBinding::new(ProtocolSequence::Alpc, "string_service")?
    );

    // Test string operations
    println!("{}", client.to_uppercase("hello"));              // Output: HELLO
    println!("{}", client.reverse("hello"));                   // Output: olleh
    println!("{}", client.count_words("hello world"));         // Output: 2
    println!("{}", client.concat("Hello, ", "World!"));        // Output: Hello, World!

    server.stop()?;
    Ok(())
}

§Supported Types

The following types can be used for parameters and return values:

Rust TypeParametersReturn ValuesNotes
i8, u88-bit integers
i16, u1616-bit integers
i32, u3232-bit integers
i64, u6464-bit integers
&strString input parameters
StringString return values

§Protocol Support

Currently only ALPC (Advanced Local Procedure Call) is supported via the ncalrpc protocol sequence. This allows RPC communication between processes on the same machine.

§What This Library Does

  • Generates all MIDL stub metadata (MIDL_STUB_DESC, MIDL_SERVER_INFO, etc.)
  • Handles NDR 2.0 and NDR64 format strings for type marshalling
  • Manages RPC binding handles and server lifecycle
  • Converts between Rust types and Windows ABI types
  • Provides clean async (non-blocking) and sync (blocking) server modes

§Limitations

This library is currently limited in scope:

  • Protocol: Only local RPC (ALPC/ncalrpc) is supported. TCP, UDP, and named pipes are not yet implemented.
  • Parameter direction: Only input ([in]) parameters and return values ([out]) are supported. Input-output parameters are not available.
  • Types: Only primitive integers and strings are supported. No pointers, structs, arrays, unions, or other complex types.
  • Security: No interface security (authentication, authorization, encryption) is implemented.
  • Exceptions: SEH exceptions from the RPC runtime are not caught or handled.
  • Callbacks: RPC callbacks from server to client are not supported.

§Interoperability

The generated code produces standard Windows RPC interfaces that are compatible with MIDL-generated C/C++ clients and servers. You can use a Rust server with a C++ client (or vice versa) as long as the interface GUID, version, and method signatures match.

§Safety

This crate uses unsafe code extensively to interact with the Windows RPC runtime. The generated client and server code manages memory carefully to ensure:

  • RPC metadata structures remain valid for the lifetime of the client/server
  • String conversions between Rust and Windows types are handled correctly
  • Memory allocated by the server for return values is properly managed
  • Static trait methods are called correctly via monomorphization

However, bugs in this crate could lead to memory corruption or undefined behavior.

§Implementation Details

The server implementation uses:

  • Generic server structs: {Interface}Server<T> is generic over the implementation type
  • Static trait methods: Server trait methods don’t take &self, making implementations stateless
  • Monomorphization: Each instantiation of Server<ConcreteType> generates type-specific wrapper functions
  • Extern “C” wrappers: Generated wrapper functions bridge the RPC runtime to Rust static methods

Modules§

client_binding
RPC client binding management.
server_binding
RPC server binding management.

Enums§

ProtocolSequence
Protocol sequence for RPC communication.

Attribute Macros§

rpc_interface
Generates Windows RPC client and server code from a trait definition.