1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
//! A high-level API for processing and synthesizing audio.
//!
//! # Example
//! ```no_run
//! use std::fs::File;
//! use web_audio_api::context::{AsBaseAudioContext, AudioContext};
//! use web_audio_api::media::{MediaElement, OggVorbisDecoder};
//! use web_audio_api::node::{AudioNode, AudioControllableSourceNode, AudioScheduledSourceNode};
//!
//! let context = AudioContext::new();
//!
//! // setup background music:
//! // read from local file
//! let file = File::open("sample.ogg").unwrap();
//! // decode file to media stream
//! let stream = OggVorbisDecoder::try_new(file).unwrap();
//! // wrap stream in MediaElement, so we can control it (loop, play/pause)
//! let mut media = MediaElement::new(stream);
//! // register as media element in the audio context
//! let background = context.create_media_element_source(media);
//! // use a gain node to control volume
//! let gain = context.create_gain();
//! // play at low volume
//! gain.gain().set_value(0.5);
//! // connect the media node to the gain node
//! background.connect(&gain);
//! // connect the gain node to the destination node (speakers)
//! gain.connect(&context.destination());
//! // start playback
//! background.set_loop(true);
//! background.start();
//!
//! // mix in an oscillator sound
//! let osc = context.create_oscillator();
//! osc.connect(&context.destination());
//! osc.start();
//!
//! // enjoy listening
//! //std::thread::sleep(std::time::Duration::from_secs(4));
//! ```

/// Render quantum size (audio graph is rendered in blocks of this size)
pub const BUFFER_SIZE: u32 = 128;

/// Maximum number of channels for audio processing
pub const MAX_CHANNELS: usize = 32;

pub mod alloc;
pub mod buffer;
pub mod context;
pub mod control;
pub mod media;
pub mod node;
pub mod param;
pub mod process;
pub mod spatial;

#[cfg(test)]
mod snapshot;

#[cfg(not(test))]
mod io;

mod analysis;
mod graph;
mod message;

/// Number of samples processed per second (Hertz) for a single channel of audio
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct SampleRate(pub u32);

/// Input/output with this index does not exist
#[derive(Debug, Clone, Copy)]
pub struct IndexSizeError {}

use std::fmt;
use std::sync::atomic::{AtomicU64, Ordering};

impl fmt::Display for IndexSizeError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}
impl std::error::Error for IndexSizeError {}

/// Media stream buffering lags behind
#[derive(Debug, Clone, Copy)]
pub struct BufferDepletedError {}

impl fmt::Display for BufferDepletedError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}
impl std::error::Error for BufferDepletedError {}

/// Atomic float, only `load` and `store` are supported, no arithmetics
#[derive(Debug)]
pub(crate) struct AtomicF64 {
    inner: AtomicU64,
}

impl AtomicF64 {
    pub fn new(v: f64) -> Self {
        Self {
            inner: AtomicU64::new(u64::from_ne_bytes(v.to_ne_bytes())),
        }
    }

    pub fn load(&self) -> f64 {
        f64::from_ne_bytes(self.inner.load(Ordering::SeqCst).to_ne_bytes())
    }

    pub fn store(&self, v: f64) {
        self.inner
            .store(u64::from_ne_bytes(v.to_ne_bytes()), Ordering::SeqCst)
    }

    pub fn swap(&self, v: f64) -> f64 {
        let prev = self
            .inner
            .swap(u64::from_ne_bytes(v.to_ne_bytes()), Ordering::SeqCst);
        f64::from_ne_bytes(prev.to_ne_bytes())
    }
}

#[cfg(test)]
mod tests {
    use float_eq::assert_float_eq;

    use super::*;

    #[test]
    fn test_atomic_f64() {
        let f = AtomicF64::new(2.0);
        assert_float_eq!(f.load(), 2.0, ulps <= 0);

        f.store(3.0);
        assert_float_eq!(f.load(), 3.0, ulps <= 0);

        let prev = f.swap(4.0);
        assert_float_eq!(prev, 3.0, ulps <= 0);
        assert_float_eq!(f.load(), 4.0, ulps <= 0);
    }
}