1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
//! General purpose audio signal data structures

use std::sync::atomic::{AtomicU32, AtomicUsize, Ordering};
use std::sync::Arc;

use crate::alloc::AudioBuffer as FixedAudioBuffer;
use crate::media::MediaStream;
use crate::SampleRate;

/// Memory-resident audio asset, basically a matrix of channels * samples
///
/// An AudioBuffer has copy-on-write semantics, so it is cheap to clone.
#[derive(Clone, Debug)]
pub struct AudioBuffer {
    channels: Vec<ChannelData>,
    sample_rate: SampleRate,
}

use std::error::Error;

impl AudioBuffer {
    /// Allocate a silent audiobuffer with given channel and samples count.
    pub fn new(channels: usize, len: usize, sample_rate: SampleRate) -> Self {
        let silence = ChannelData::new(len);

        Self {
            channels: vec![silence; channels],
            sample_rate,
        }
    }

    /// Create a multi-channel audiobuffer.
    pub fn from_channels(channels: Vec<ChannelData>, sample_rate: SampleRate) -> Self {
        Self {
            channels,
            sample_rate,
        }
    }

    /// Number of channels in this AudioBuffer
    pub fn number_of_channels(&self) -> usize {
        self.channels.len()
    }

    /// Number of samples per channel in this AudioBuffer
    pub fn sample_len(&self) -> usize {
        self.channels.get(0).map(ChannelData::len).unwrap_or(0)
    }

    /// Sample rate of this AudioBuffer in Hertz
    pub fn sample_rate(&self) -> SampleRate {
        self.sample_rate
    }

    /// Duration in seconds of the AudioBuffer
    pub fn duration(&self) -> f64 {
        self.sample_len() as f64 / self.sample_rate.0 as f64
    }

    /// Channel data as slice
    pub fn channels(&self) -> &[ChannelData] {
        &self.channels
    }

    /// Channel data as slice (mutable)
    pub fn channels_mut(&mut self) -> &mut [ChannelData] {
        &mut self.channels
    }

    /// Get the samples from this specific channel.
    ///
    /// Panics if the index is greater than the available number of channels
    pub fn channel_data(&self, index: usize) -> &ChannelData {
        &self.channels[index]
    }

    /// Get the samples (mutable) from this specific channel.
    ///
    /// Panics if the index is greater than the available number of channels
    pub fn channel_data_mut(&mut self, index: usize) -> &mut ChannelData {
        &mut self.channels[index]
    }

    /// Modify every channel in the same way
    pub fn modify_channels<F: Fn(&mut ChannelData)>(&mut self, fun: F) {
        // todo, optimize for Arcs that are equal
        self.channels.iter_mut().for_each(fun)
    }

    /// Extends an AudioBuffer with the contents of another.
    ///
    /// This function will panic if the sample_rate and channel_count are not equal
    pub fn extend(&mut self, other: &Self) {
        assert_eq!(self.sample_rate, other.sample_rate);
        assert_eq!(self.number_of_channels(), other.number_of_channels());

        let data = self.channels_mut();
        data.iter_mut()
            .zip(other.channels.iter())
            .for_each(|(channel, other_channel)| {
                let cur_channel_data = Arc::make_mut(&mut channel.data);
                cur_channel_data.extend(other_channel.as_slice());
            })
    }

    /// Extends an AudioBuffer with an [`FixedAudioBuffer`]
    ///
    /// This assumes the sample_rate matches. No up/down-mixing is performed
    pub fn extend_alloc(&mut self, other: &FixedAudioBuffer) {
        self.channels_mut()
            .iter_mut()
            .zip(other.channels())
            .for_each(|(channel, other_channel)| {
                let cur_channel_data = Arc::make_mut(&mut channel.data);
                cur_channel_data.extend_from_slice(&other_channel[..]);
            })
    }

    /// Split an AudioBuffer in chunks with length `sample_len`.
    ///
    /// The last chunk may be shorter than `sample_len`
    pub fn split(mut self, sample_len: u32) -> Vec<AudioBuffer> {
        let sample_len = sample_len as usize;
        let total_len = self.sample_len();
        let sample_rate = self.sample_rate();

        let mut channels: Vec<_> = self
            .channels_mut()
            .iter()
            .map(|channel_data| channel_data.as_slice().chunks(sample_len))
            .collect();

        (0..total_len)
            .step_by(sample_len)
            .map(|_| {
                let cur: Vec<_> = channels
                    .iter_mut()
                    .map(|c| ChannelData::from(c.next().unwrap().to_vec()))
                    .collect();
                AudioBuffer::from_channels(cur, sample_rate)
            })
            .collect()
    }

    /// Split an AudioBuffer in two at the given index.
    pub fn split_off(&mut self, index: u32) -> AudioBuffer {
        let index = index as usize;
        let sample_rate = self.sample_rate();

        let channels: Vec<_> = self
            .channels_mut()
            .iter_mut()
            .map(|channel_data| Arc::make_mut(&mut channel_data.data).split_off(index))
            .map(ChannelData::from)
            .collect();

        AudioBuffer::from_channels(channels, sample_rate)
    }

    /// Resample to the desired sample rate.
    ///
    /// This changes the sample_length of the buffer.
    ///
    /// ```
    /// use web_audio_api::SampleRate;
    /// use web_audio_api::buffer::{ChannelData, AudioBuffer};
    ///
    /// let channel = ChannelData::from(vec![1., 2., 3., 4., 5.]);
    /// let mut buffer = AudioBuffer::from_channels(vec![channel], SampleRate(48_000));
    ///
    /// // upmix from 48k to 96k Hertz sample rate
    /// buffer.resample(SampleRate(96_000));
    ///
    /// assert_eq!(
    ///     buffer.channel_data(0),
    ///     &ChannelData::from(vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.,])
    /// );
    ///
    /// assert_eq!(buffer.sample_rate().0, 96_000);
    /// ```
    pub fn resample(&mut self, sample_rate: SampleRate) {
        if self.sample_rate() == sample_rate {
            return;
        }

        let rate = sample_rate.0 as f32 / self.sample_rate.0 as f32;
        self.modify_channels(|channel_data| {
            let mut current = 0;
            let resampled = channel_data
                .data
                .iter()
                .enumerate()
                .flat_map(|(i, v)| {
                    let target = ((i + 1) as f32 * rate) as usize;
                    let take = target - current.min(target);
                    current += take;
                    std::iter::repeat(*v).take(take)
                })
                .collect();
            channel_data.data = Arc::new(resampled);
        });

        self.sample_rate = sample_rate;
    }
}

/// Single channel audio samples, basically wraps a `Arc<Vec<f32>>`
///
/// ChannelData has copy-on-write semantics, so it is cheap to clone.
#[derive(Clone, Debug, PartialEq)]
pub struct ChannelData {
    data: Arc<Vec<f32>>,
}

impl ChannelData {
    pub fn new(length: usize) -> Self {
        let buffer = vec![0.; length];
        let data = Arc::new(buffer);

        Self { data }
    }

    pub fn from(data: Vec<f32>) -> Self {
        Self {
            data: Arc::new(data),
        }
    }

    pub fn len(&self) -> usize {
        self.data.len()
    }

    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    pub fn as_slice(&self) -> &[f32] {
        &self.data[..]
    }

    pub fn as_mut_slice(&mut self) -> &mut [f32] {
        &mut Arc::make_mut(&mut self.data)[..]
    }
}

/// How channels must be matched between the node's inputs and outputs.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum ChannelCountMode {
    /// `computedNumberOfChannels` is the maximum of the number of channels of all connections to an
    /// input. In this mode channelCount is ignored.
    Max,
    /// `computedNumberOfChannels` is determined as for "max" and then clamped to a maximum value of
    /// the given channelCount.
    ClampedMax,
    /// `computedNumberOfChannels` is the exact value as specified by the channelCount.
    Explicit,
}

impl From<u32> for ChannelCountMode {
    fn from(i: u32) -> Self {
        use ChannelCountMode::*;

        match i {
            0 => Max,
            1 => ClampedMax,
            2 => Explicit,
            _ => unreachable!(),
        }
    }
}

/// The meaning of the channels, defining how audio up-mixing and down-mixing will happen.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum ChannelInterpretation {
    Speakers,
    Discrete,
}

impl From<u32> for ChannelInterpretation {
    fn from(i: u32) -> Self {
        use ChannelInterpretation::*;

        match i {
            0 => Speakers,
            1 => Discrete,
            _ => unreachable!(),
        }
    }
}

/// Options for constructing ChannelConfig
#[derive(Clone, Debug)]
pub struct ChannelConfigOptions {
    pub count: usize,
    pub mode: ChannelCountMode,
    pub interpretation: ChannelInterpretation,
}

impl Default for ChannelConfigOptions {
    fn default() -> Self {
        Self {
            count: 2,
            mode: ChannelCountMode::Max,
            interpretation: ChannelInterpretation::Speakers,
        }
    }
}

/// Config for up/down-mixing of channels for audio nodes
#[derive(Clone, Debug)]
pub struct ChannelConfig {
    count: Arc<AtomicUsize>,
    mode: Arc<AtomicU32>,
    interpretation: Arc<AtomicU32>,
}

impl ChannelConfig {
    /// Represents an enumerated value describing the way channels must be matched between the
    /// node's inputs and outputs.
    pub fn count_mode(&self) -> ChannelCountMode {
        self.mode.load(Ordering::SeqCst).into()
    }
    pub fn set_count_mode(&self, v: ChannelCountMode) {
        self.mode.store(v as u32, Ordering::SeqCst)
    }

    /// Represents an enumerated value describing the meaning of the channels. This interpretation
    /// will define how audio up-mixing and down-mixing will happen.
    pub fn interpretation(&self) -> ChannelInterpretation {
        self.interpretation.load(Ordering::SeqCst).into()
    }
    pub fn set_interpretation(&self, v: ChannelInterpretation) {
        self.interpretation.store(v as u32, Ordering::SeqCst)
    }

    /// Represents an integer used to determine how many channels are used when up-mixing and
    /// down-mixing connections to any inputs to the node.
    pub fn count(&self) -> usize {
        self.count.load(Ordering::SeqCst)
    }
    pub fn set_count(&self, v: usize) {
        self.count.store(v, Ordering::SeqCst)
    }
}

impl From<ChannelConfigOptions> for ChannelConfig {
    fn from(opts: ChannelConfigOptions) -> Self {
        ChannelConfig {
            count: Arc::new(AtomicUsize::from(opts.count)),
            mode: Arc::new(AtomicU32::from(opts.mode as u32)),
            interpretation: Arc::new(AtomicU32::from(opts.interpretation as u32)),
        }
    }
}

impl std::iter::FromIterator<AudioBuffer> for AudioBuffer {
    fn from_iter<I: IntoIterator<Item = AudioBuffer>>(iter: I) -> Self {
        let mut iter = iter.into_iter();
        let mut collect: AudioBuffer = match iter.next() {
            None => return AudioBuffer::new(0, 0, SampleRate(0)),
            Some(first) => first,
        };

        for elem in iter {
            collect.extend(&elem);
        }

        collect
    }
}

/// Sample rate converter and buffer chunk splitter.
///
/// A `MediaElement` can be wrapped inside a `Resampler` to yield AudioBuffers of the desired sample_rate and length
///
/// ```
/// use web_audio_api::SampleRate;
/// use web_audio_api::buffer::{ChannelData, AudioBuffer, Resampler};
///
/// // construct an input of 3 chunks of 5 samples
/// let channel = ChannelData::from(vec![1., 2., 3., 4., 5.]);
/// let input_buf = AudioBuffer::from_channels(vec![channel], SampleRate(44_100));
/// let input = vec![input_buf; 3].into_iter().map(|b| Ok(b));
///
/// // resample to chunks of 10 samples
/// let mut resampler = Resampler::new(SampleRate(44_100), 10, input);
///
/// // first chunk contains 10 samples
/// let next = resampler.next().unwrap().unwrap();
/// assert_eq!(next.sample_len(), 10);
/// assert_eq!(next.channel_data(0), &ChannelData::from(vec![
///     1., 2., 3., 4., 5.,
///     1., 2., 3., 4., 5.,
/// ]));
///
/// // second chunk contains 5 samples of signal, and 5 silent
/// let next = resampler.next().unwrap().unwrap();
/// assert_eq!(next.sample_len(), 10);
/// assert_eq!(next.channel_data(0), &ChannelData::from(vec![
///     1., 2., 3., 4., 5.,
///     0., 0., 0., 0., 0.,
/// ]));
///
/// // no further chunks
/// assert!(resampler.next().is_none());
/// ```
pub struct Resampler<I> {
    /// desired sample rate
    sample_rate: SampleRate,
    /// desired sample length
    sample_len: u32,
    /// input stream
    input: I,
    /// internal buffer
    buffer: Option<AudioBuffer>,
}

impl<M: MediaStream> Resampler<M> {
    pub fn new(sample_rate: SampleRate, sample_len: u32, input: M) -> Self {
        Self {
            sample_rate,
            sample_len,
            input,
            buffer: None,
        }
    }
}

impl<M: MediaStream> Iterator for Resampler<M> {
    type Item = Result<AudioBuffer, Box<dyn Error + Send>>;

    fn next(&mut self) -> Option<Self::Item> {
        let mut buffer = match self.buffer.take() {
            None => match self.input.next() {
                None => return None,
                Some(Err(e)) => return Some(Err(e)),
                Some(Ok(mut data)) => {
                    data.resample(self.sample_rate);
                    data
                }
            },
            Some(data) => data,
        };

        while (buffer.sample_len() as u32) < self.sample_len {
            // buffer is smaller than desired len
            match self.input.next() {
                None => {
                    let padding = AudioBuffer::new(
                        buffer.number_of_channels(),
                        self.sample_len as usize - buffer.sample_len(),
                        self.sample_rate,
                    );
                    buffer.extend(&padding);

                    return Some(Ok(buffer));
                }
                Some(Err(e)) => return Some(Err(e)),
                Some(Ok(mut data)) => {
                    data.resample(self.sample_rate);
                    buffer.extend(&data)
                }
            }
        }

        if buffer.sample_len() as u32 == self.sample_len {
            return Some(Ok(buffer));
        }

        self.buffer = Some(buffer.split_off(self.sample_len));

        Some(Ok(buffer))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_silent() {
        let b = AudioBuffer::new(2, 10, SampleRate(44_100));

        assert_eq!(b.sample_len(), 10);
        assert_eq!(b.number_of_channels(), 2);
        assert_eq!(b.sample_rate().0, 44_100);
        assert_eq!(b.channel_data(0).as_slice(), &[0.; 10]);
        assert_eq!(b.channel_data(1).as_slice(), &[0.; 10]);
        assert_eq!(b.channels().get(2), None);
    }

    #[test]
    fn test_concat_split() {
        let mut b1 = AudioBuffer::new(2, 5, SampleRate(44_100));
        let b2 = AudioBuffer::new(2, 5, SampleRate(44_100));
        b1.extend(&b2);

        assert_eq!(b1.sample_len(), 10);
        assert_eq!(b1.number_of_channels(), 2);
        assert_eq!(b1.sample_rate().0, 44_100);

        let channel_data = ChannelData::from(vec![1.; 5]);
        let b3 = AudioBuffer::from_channels(vec![channel_data; 2], SampleRate(44_100));

        b1.extend(&b3);

        assert_eq!(b1.sample_len(), 15);
        assert_eq!(b1.number_of_channels(), 2);
        assert_eq!(b1.sample_rate().0, 44_100);
        assert_eq!(
            b1.channel_data(0).as_slice(),
            &[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.]
        );

        let split = b1.split(8);
        assert_eq!(
            split[0].channel_data(0).as_slice(),
            &[0., 0., 0., 0., 0., 0., 0., 0.]
        );
        assert_eq!(
            split[1].channel_data(0).as_slice(),
            &[0., 0., 1., 1., 1., 1., 1.]
        );
    }

    #[test]
    fn test_resample_upmix() {
        let channel = ChannelData::from(vec![1., 2., 3., 4., 5.]);
        let mut buffer = AudioBuffer::from_channels(vec![channel], SampleRate(100));
        buffer.resample(SampleRate(200));
        assert_eq!(
            buffer.channel_data(0).as_slice(),
            &[1., 1., 2., 2., 3., 3., 4., 4., 5., 5.,]
        );
        assert_eq!(buffer.sample_rate().0, 200);
    }

    #[test]
    fn test_resample_downmix() {
        let channel = ChannelData::from(vec![1., 2., 3., 4., 5.]);
        let mut buffer = AudioBuffer::from_channels(vec![channel], SampleRate(200));
        buffer.resample(SampleRate(100));
        assert_eq!(buffer.channel_data(0).as_slice(), &[2., 4.]);
        assert_eq!(buffer.sample_rate().0, 100);
    }

    #[test]
    fn test_resampler_concat() {
        let channel = ChannelData::from(vec![1., 2., 3., 4., 5.]);
        let input_buf = AudioBuffer::from_channels(vec![channel], SampleRate(44_100));
        let input = vec![input_buf; 3].into_iter().map(|b| Ok(b));
        let mut resampler = Resampler::new(SampleRate(44_100), 10, input);

        let next = resampler.next().unwrap().unwrap();
        assert_eq!(next.sample_len(), 10);
        assert_eq!(
            next.channel_data(0).as_slice(),
            &[1., 2., 3., 4., 5., 1., 2., 3., 4., 5.,]
        );

        let next = resampler.next().unwrap().unwrap();
        assert_eq!(next.sample_len(), 10);
        assert_eq!(
            next.channel_data(0).as_slice(),
            &[1., 2., 3., 4., 5., 0., 0., 0., 0., 0.]
        );

        assert!(resampler.next().is_none());
    }

    #[test]
    fn test_resampler_split() {
        let channel = ChannelData::from(vec![1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]);
        let input_buf = Ok(AudioBuffer::from_channels(
            vec![channel],
            SampleRate(44_100),
        ));
        let input = vec![input_buf].into_iter();
        let mut resampler = Resampler::new(SampleRate(44_100), 5, input);

        let next = resampler.next().unwrap().unwrap();
        assert_eq!(next.sample_len(), 5);
        assert_eq!(next.channel_data(0).as_slice(), &[1., 2., 3., 4., 5.,]);

        let next = resampler.next().unwrap().unwrap();
        assert_eq!(next.sample_len(), 5);
        assert_eq!(next.channel_data(0).as_slice(), &[6., 7., 8., 9., 10.]);

        assert!(resampler.next().is_none());
    }
}