1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
use crate::context::{AudioContextRegistration, AudioParamId, BaseAudioContext};
use crate::param::{AudioParam, AudioParamDescriptor};
use crate::render::{
AudioParamValues, AudioProcessor, AudioRenderQuantum, AudioWorkletGlobalScope,
};
use crate::RENDER_QUANTUM_SIZE;
use super::{AudioNode, AudioNodeOptions, ChannelConfig, ChannelInterpretation};
use std::cell::{Cell, RefCell, RefMut};
use std::rc::Rc;
/// Options for constructing a [`DelayNode`]
// dictionary DelayOptions : AudioNodeOptions {
// double maxDelayTime = 1;
// double delayTime = 0;
// };
#[derive(Clone, Debug)]
pub struct DelayOptions {
pub max_delay_time: f64,
pub delay_time: f64,
pub audio_node_options: AudioNodeOptions,
}
impl Default for DelayOptions {
fn default() -> Self {
Self {
max_delay_time: 1.,
delay_time: 0.,
audio_node_options: AudioNodeOptions::default(),
}
}
}
#[derive(Copy, Clone, Debug, Default)]
struct PlaybackInfo {
prev_block_index: usize,
prev_frame_index: usize,
k: f32,
}
/// Node that delays the incoming audio signal by a certain amount
///
/// The current implementation does not allow for zero delay. The minimum delay is one render
/// quantum (e.g. ~2.9ms at 44.1kHz).
///
/// - MDN documentation: <https://developer.mozilla.org/en-US/docs/Web/API/DelayNode>
/// - specification: <https://webaudio.github.io/web-audio-api/#DelayNode>
/// - see also: [`BaseAudioContext::create_delay`]
///
/// # Usage
///
/// ```no_run
/// use std::fs::File;
/// use web_audio_api::context::{BaseAudioContext, AudioContext};
/// use web_audio_api::node::{AudioNode, AudioScheduledSourceNode};
///
/// // create an `AudioContext` and load a sound file
/// let context = AudioContext::default();
/// let file = File::open("samples/sample.wav").unwrap();
/// let audio_buffer = context.decode_audio_data_sync(file).unwrap();
///
/// // create a delay of 0.5s
/// let delay = context.create_delay(1.);
/// delay.delay_time().set_value(0.5);
/// delay.connect(&context.destination());
///
/// let mut src = context.create_buffer_source();
/// src.set_buffer(audio_buffer);
/// // connect to both delay and destination
/// src.connect(&delay);
/// src.connect(&context.destination());
/// src.start();
/// ```
///
/// # Examples
///
/// - `cargo run --release --example simple_delay`
/// - `cargo run --release --example feedback_delay`
///
/*
* For simplicity in the audio graph rendering, we have made the conscious decision to deviate from
* the spec and split the delay node up front in a reader and writer node (instead of during the
* render loop - see https://webaudio.github.io/web-audio-api/#rendering-loop )
*
* This has a drawback: a delay of 0 is no longer possible. This would only be possible if the
* writer end is rendered before the reader end in the graph, but we cannot enforce that here.
* (The only way would be to connect the writer to the reader, but that would kill the
* cycle-breaker feature of the delay node.)
*
* @note: one possible strategy here would be to create a connection between Reader
* and Writer in `DelayNode::new` just to guarantee the order of the processing if
* the delay is not in a loop. In the graph process if the node is found in a cycle,
* this connection could be removed and the Reader marked as "in_cycle" so that
* it would clamp the min delay to quantum duration.
* > no need to make this cancellable, once in a cycle the node behaves like that
* even if the cycle is broken later (user have to know what they are doing)
*/
#[derive(Debug)]
pub struct DelayNode {
reader_registration: AudioContextRegistration,
writer_registration: AudioContextRegistration,
delay_time: AudioParam,
channel_config: ChannelConfig,
}
impl AudioNode for DelayNode {
/*
* We set the writer node as 'main' registration. This means other nodes can say
* `node.connect(delaynode)` and they will connect to the writer.
* Below, we override the (dis)connect methods as they should operate on the reader node.
*/
fn registration(&self) -> &AudioContextRegistration {
&self.writer_registration
}
fn channel_config(&self) -> &ChannelConfig {
&self.channel_config
}
fn number_of_inputs(&self) -> usize {
1
}
fn number_of_outputs(&self) -> usize {
1
}
/// Connect a specific output of this AudioNode to a specific input of another node.
fn connect_from_output_to_input<'a>(
&self,
dest: &'a dyn AudioNode,
output: usize,
input: usize,
) -> &'a dyn AudioNode {
assert!(
self.context() == dest.context(),
"InvalidAccessError - Attempting to connect nodes from different contexts",
);
assert!(
self.number_of_outputs() > output,
"IndexSizeError - output port {} is out of bounds",
output
);
assert!(
dest.number_of_inputs() > input,
"IndexSizeError - input port {} is out of bounds",
input
);
self.context().connect(
self.reader_registration.id(),
dest.registration().id(),
output,
input,
);
dest
}
/// Disconnects all outgoing connections from the AudioNode.
fn disconnect(&self) {
self.context()
.disconnect(self.reader_registration.id(), None, None, None);
}
/// Disconnects all outputs of the AudioNode that go to a specific destination AudioNode.
///
/// # Panics
///
/// This function will panic when
/// - the AudioContext of the source and destination does not match
/// - the source node was not connected to the destination node
fn disconnect_dest(&self, dest: &dyn AudioNode) {
assert!(
self.context() == dest.context(),
"InvalidAccessError - Attempting to disconnect nodes from different contexts"
);
self.context().disconnect(
self.reader_registration.id(),
None,
Some(dest.registration().id()),
None,
);
}
/// Disconnects all outgoing connections at the given output port from the AudioNode.
///
/// # Panics
///
/// This function will panic when
/// - if the output port is out of bounds for this node
fn disconnect_output(&self, output: usize) {
assert!(
self.number_of_outputs() > output,
"IndexSizeError - output port {} is out of bounds",
output
);
self.context()
.disconnect(self.reader_registration.id(), Some(output), None, None);
}
/// Disconnects a specific output of the AudioNode to a specific destination AudioNode
///
/// # Panics
///
/// This function will panic when
/// - the AudioContext of the source and destination does not match
/// - if the output port is out of bounds for the source node
/// - the source node was not connected to the destination node
fn disconnect_dest_from_output(&self, dest: &dyn AudioNode, output: usize) {
assert!(
self.context() == dest.context(),
"InvalidAccessError - Attempting to disconnect nodes from different contexts"
);
assert!(
self.number_of_outputs() > output,
"IndexSizeError - output port {} is out of bounds",
output
);
self.context().disconnect(
self.reader_registration.id(),
Some(output),
Some(dest.registration().id()),
None,
);
}
/// Disconnects a specific output of the AudioNode to a specific input of some destination
/// AudioNode
///
/// # Panics
///
/// This function will panic when
/// - the AudioContext of the source and destination does not match
/// - if the input port is out of bounds for the destination node
/// - if the output port is out of bounds for the source node
/// - the source node was not connected to the destination node
fn disconnect_dest_from_output_to_input(
&self,
dest: &dyn AudioNode,
output: usize,
input: usize,
) {
assert!(
self.context() == dest.context(),
"InvalidAccessError - Attempting to disconnect nodes from different contexts"
);
assert!(
self.number_of_outputs() > output,
"IndexSizeError - output port {} is out of bounds",
output
);
assert!(
dest.number_of_inputs() > input,
"IndexSizeError - input port {} is out of bounds",
input
);
self.context().disconnect(
self.reader_registration.id(),
Some(output),
Some(dest.registration().id()),
Some(input),
);
}
}
impl DelayNode {
/// Create a new DelayNode
///
/// # Panics
///
/// Panics when the max delay value is smaller than zero or langer than three minutes.
pub fn new<C: BaseAudioContext>(context: &C, options: DelayOptions) -> Self {
let sample_rate = context.sample_rate() as f64;
// Specifies the maximum delay time in seconds allowed for the delay line.
// If specified, this value MUST be greater than zero and less than three
// minutes or a NotSupportedError exception MUST be thrown. If not specified,
// then 1 will be used.
assert!(
options.max_delay_time > 0. && options.max_delay_time < 180.,
"NotSupportedError - maxDelayTime MUST be greater than zero and less than three minutes",
);
// Allocate large enough ring buffer to store all delayed samples.
// We add one extra slot in the ring buffer so that reader never reads the
// same entry in history as the writer, even if `delay_time == max_delay_time`
// of if `max_delay_time < quantum duration`
let max_delay_time = options.max_delay_time;
let num_quanta =
(max_delay_time * sample_rate / RENDER_QUANTUM_SIZE as f64).ceil() as usize;
let ring_buffer = Vec::with_capacity(num_quanta + 1);
let shared_ring_buffer = Rc::new(RefCell::new(ring_buffer));
let shared_ring_buffer_clone = Rc::clone(&shared_ring_buffer);
// shared value set by the writer when it is dropped
let last_written_index = Rc::new(Cell::<Option<usize>>::new(None));
let last_written_index_clone = Rc::clone(&last_written_index);
// shared value for reader/writer to determine who was rendered first,
// this will indicate if the delay node acts as a cycle breaker
let latest_frame_written = Rc::new(Cell::new(u64::MAX));
let latest_frame_written_clone = Rc::clone(&latest_frame_written);
let node = context.base().register(move |writer_registration| {
let node = context.base().register(move |reader_registration| {
let param_opts = AudioParamDescriptor {
name: String::new(),
min_value: 0.,
max_value: max_delay_time as f32,
default_value: 0.,
automation_rate: crate::param::AutomationRate::A,
};
let (param, proc) = context.create_audio_param(param_opts, &reader_registration);
param.set_value(options.delay_time as f32);
let reader_render = DelayReader {
delay_time: proc,
ring_buffer: shared_ring_buffer_clone,
index: 0,
last_written_index: last_written_index_clone,
in_cycle: false,
last_written_index_checked: None,
latest_frame_written: latest_frame_written_clone,
};
let node = DelayNode {
reader_registration,
writer_registration,
channel_config: options.audio_node_options.into(),
delay_time: param,
};
(node, Box::new(reader_render))
});
let writer_render = DelayWriter {
ring_buffer: shared_ring_buffer,
index: 0,
last_written_index,
latest_frame_written,
};
(node, Box::new(writer_render))
});
let writer_id = node.writer_registration.id();
let reader_id = node.reader_registration.id();
// connect Writer to Reader to guarantee order of processing and enable
// sub-quantum delay. If found in cycle this connection will be deleted
// by the graph and the minimum delay clamped to one render quantum
context.base().mark_cycle_breaker(&node.writer_registration);
context.base().connect(writer_id, reader_id, 0, 0);
node
}
/// A-rate [`AudioParam`] representing the amount of delay (in seconds) to apply.
pub fn delay_time(&self) -> &AudioParam {
&self.delay_time
}
}
struct DelayWriter {
ring_buffer: Rc<RefCell<Vec<AudioRenderQuantum>>>,
index: usize,
latest_frame_written: Rc<Cell<u64>>,
last_written_index: Rc<Cell<Option<usize>>>,
}
// SAFETY:
// AudioRenderQuantums are not Send but we promise the `ring_buffer` Vec is
// empty before we ship it to the render thread.
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl Send for DelayWriter {}
trait RingBufferChecker {
fn ring_buffer_mut(&self) -> RefMut<'_, Vec<AudioRenderQuantum>>;
// This step guarantees the ring buffer is filled with silence buffers,
// This allow to simplify the code in both Writer and Reader as we know
// `len() == capacity()` and all inner buffers are initialized with zeros.
#[inline(always)]
fn check_ring_buffer_size(&self, render_quantum: &AudioRenderQuantum) {
let mut ring_buffer = self.ring_buffer_mut();
if ring_buffer.len() < ring_buffer.capacity() {
let len = ring_buffer.capacity();
let mut silence = render_quantum.clone();
silence.make_silent();
ring_buffer.resize(len, silence);
}
}
}
impl Drop for DelayWriter {
fn drop(&mut self) {
let last_written_index = if self.index == 0 {
self.ring_buffer.borrow().capacity() - 1
} else {
self.index - 1
};
self.last_written_index.set(Some(last_written_index));
}
}
impl RingBufferChecker for DelayWriter {
#[inline(always)]
fn ring_buffer_mut(&self) -> RefMut<'_, Vec<AudioRenderQuantum>> {
self.ring_buffer.borrow_mut()
}
}
impl AudioProcessor for DelayWriter {
fn process(
&mut self,
inputs: &[AudioRenderQuantum],
outputs: &mut [AudioRenderQuantum],
_params: AudioParamValues<'_>,
scope: &AudioWorkletGlobalScope,
) -> bool {
// single input/output node
let input = inputs[0].clone();
let output = &mut outputs[0];
// We must perform this check on both Writer and Reader as the order of
// the rendering between them is not guaranteed.
self.check_ring_buffer_size(&input);
// `check_ring_buffer_up_down_mix` can only be done on the Writer
// side as Reader do not access the "real" input
self.check_ring_buffer_up_down_mix(&input);
// populate ring buffer
let mut buffer = self.ring_buffer.borrow_mut();
buffer[self.index] = input;
// increment cursor and last written frame
self.index = (self.index + 1) % buffer.capacity();
self.latest_frame_written.set(scope.current_frame);
// The writer end does not produce output,
// clear the buffer so that it can be reused
output.make_silent();
// let the node be decommisioned if it has no input left
false
}
fn has_side_effects(&self) -> bool {
true // message passing
}
}
impl DelayWriter {
#[inline(always)]
fn check_ring_buffer_up_down_mix(&self, input: &AudioRenderQuantum) {
// [spec]
// When the number of channels in a DelayNode's input changes (thus changing
// the output channel count also), there may be delayed audio samples which
// have not yet been output by the node and are part of its internal state.
// If these samples were received earlier with a different channel count,
// they MUST be upmixed or downmixed before being combined with newly received
// input so that all internal delay-line mixing takes place using the single
// prevailing channel layout.
let mut ring_buffer = self.ring_buffer_mut();
let buffer_number_of_channels = ring_buffer[0].number_of_channels();
let input_number_of_channels = input.number_of_channels();
if buffer_number_of_channels != input_number_of_channels {
for render_quantum in ring_buffer.iter_mut() {
render_quantum.mix(input_number_of_channels, ChannelInterpretation::Speakers);
}
}
}
}
struct DelayReader {
delay_time: AudioParamId,
ring_buffer: Rc<RefCell<Vec<AudioRenderQuantum>>>,
index: usize,
latest_frame_written: Rc<Cell<u64>>,
in_cycle: bool,
last_written_index: Rc<Cell<Option<usize>>>,
// local copy of shared `last_written_index` so as to avoid render ordering issues
last_written_index_checked: Option<usize>,
}
// SAFETY:
// AudioRenderQuantums are not Send but we promise the `ring_buffer` Vec is
// empty before we ship it to the render thread.
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl Send for DelayReader {}
impl RingBufferChecker for DelayReader {
#[inline(always)]
fn ring_buffer_mut(&self) -> RefMut<'_, Vec<AudioRenderQuantum>> {
self.ring_buffer.borrow_mut()
}
}
impl AudioProcessor for DelayReader {
fn process(
&mut self,
_inputs: &[AudioRenderQuantum], // cannot be used
outputs: &mut [AudioRenderQuantum],
params: AudioParamValues<'_>,
scope: &AudioWorkletGlobalScope,
) -> bool {
// single input/output node
let output = &mut outputs[0];
// We must perform the checks (buffer size and up/down mix) on both Writer
// and Reader as the order of processing between them is not guaranteed.
self.check_ring_buffer_size(output);
let ring_buffer = self.ring_buffer.borrow();
// we need to rely on ring buffer to know the actual number of output channels
let number_of_channels = ring_buffer[0].number_of_channels();
output.set_number_of_channels(number_of_channels);
if !self.in_cycle {
// check the latest written frame by the delay writer
let latest_frame_written = self.latest_frame_written.get();
// if the delay writer has not rendered before us, the cycle breaker has been applied
self.in_cycle = latest_frame_written != scope.current_frame;
// once we store in_cycle = true, we do not want to go back to false
// https://github.com/orottier/web-audio-api-rs/pull/198#discussion_r945326200
}
// compute all playback infos for this block
let delay = params.get(&self.delay_time);
let sample_rate = scope.sample_rate as f64;
let dt = 1. / sample_rate;
let quantum_duration = RENDER_QUANTUM_SIZE as f64 * dt;
let ring_size = ring_buffer.len() as i32;
let ring_index = self.index as i32;
let mut playback_infos = [PlaybackInfo::default(); RENDER_QUANTUM_SIZE];
if delay.len() == 1 {
playback_infos[0] = Self::get_playback_infos(
f64::from(delay[0]),
self.in_cycle,
0.,
quantum_duration,
sample_rate,
ring_size,
ring_index,
);
for i in 1..RENDER_QUANTUM_SIZE {
let PlaybackInfo {
prev_block_index,
prev_frame_index,
k,
} = playback_infos[i - 1];
let mut prev_block_index = prev_block_index;
let mut prev_frame_index = prev_frame_index + 1;
if prev_frame_index >= RENDER_QUANTUM_SIZE {
prev_block_index = (prev_block_index + 1) % ring_buffer.len();
prev_frame_index = 0;
}
playback_infos[i] = PlaybackInfo {
prev_block_index,
prev_frame_index,
k,
};
}
} else {
delay
.iter()
.zip(playback_infos.iter_mut())
.enumerate()
.for_each(|(index, (&d, infos))| {
*infos = Self::get_playback_infos(
f64::from(d),
self.in_cycle,
index as f64,
quantum_duration,
sample_rate,
ring_size,
ring_index,
);
});
}
// [spec] A DelayNode in a cycle is actively processing only when the absolute
// value of any output sample for the current render quantum is greater
// than or equal to 2^−126 (smallest f32 value).
// @note: we use the same strategy even if not in a cycle
let mut is_actively_processing = false;
// render channels aligned
for (channel_number, output_channel) in output.channels_mut().iter_mut().enumerate() {
// store channel data locally and update pointer only when needed
let mut block_index = playback_infos[0].prev_block_index;
let mut channel_data = ring_buffer[block_index].channel_data(channel_number);
output_channel
.iter_mut()
.zip(playback_infos.iter_mut())
.for_each(|(o, infos)| {
let PlaybackInfo {
prev_block_index,
prev_frame_index,
k,
} = *infos;
// find next sample address
let mut next_block_index = prev_block_index;
let mut next_frame_index = prev_frame_index + 1;
if next_frame_index >= RENDER_QUANTUM_SIZE {
next_block_index = (next_block_index + 1) % ring_buffer.len();
next_frame_index = 0;
}
// update pointer to channel_data if needed
// @note: most of the time the step is not necessary but can
// be in case of an automotation with increasing delay time
if block_index != prev_block_index {
block_index = prev_block_index;
channel_data = ring_buffer[block_index].channel_data(channel_number);
}
let prev_sample = channel_data[prev_frame_index];
// update pointer to channel_data if needed
if block_index != next_block_index {
block_index = next_block_index;
channel_data = ring_buffer[block_index].channel_data(channel_number);
}
let next_sample = channel_data[next_frame_index];
let value = (1. - k).mul_add(prev_sample, k * next_sample);
if value.is_normal() {
is_actively_processing = true;
}
*o = value;
});
}
if !is_actively_processing {
output.make_silent();
}
if matches!(self.last_written_index_checked, Some(index) if index == self.index) {
return false;
}
// check if the writer has been decommissioned
// we need this local copy because if the writer has been processed
// before the reader, the direct check against `self.last_written_index`
// would be true earlier than we want
let last_written_index = self.last_written_index.get();
if last_written_index.is_some() && self.last_written_index_checked.is_none() {
self.last_written_index_checked = last_written_index;
}
// increment ring buffer cursor
self.index = (self.index + 1) % ring_buffer.capacity();
true
}
}
impl DelayReader {
#[inline(always)]
fn get_playback_infos(
delay: f64,
in_cycle: bool,
sample_index: f64,
quantum_duration: f64,
sample_rate: f64,
ring_size: i32,
ring_index: i32,
) -> PlaybackInfo {
// param is already clamped to max_delay_time internally, so it is
// safe to only check lower boundary
let clamped_delay = if in_cycle {
delay.max(quantum_duration)
} else {
delay
};
let num_samples = clamped_delay * sample_rate;
// negative position of the playhead relative to this block start
let position = sample_index - num_samples;
let position_floored = position.floor();
// find address of the frame in the ring buffer just before `position`
let num_frames = RENDER_QUANTUM_SIZE as i32;
// offset of the block in which the target sample is recorded
// we need to be `float` here so that `floor()` behaves as expected
let block_offset = (position_floored / num_frames as f64).floor();
// index of the block in which the target sample is recorded
let mut prev_block_index = ring_index + block_offset as i32;
// unroll ring buffer is needed
if prev_block_index < 0 {
prev_block_index += ring_size;
}
// find frame index in the target block
let mut frame_offset = position_floored as i32 % num_frames;
// handle special 0 case
if frame_offset == 0 {
frame_offset = -num_frames;
}
let prev_frame_index = if frame_offset <= 0 {
num_frames + frame_offset
} else {
// sub-quantum delay
frame_offset
};
// as position is negative k will be what we expect
let k = (position - position_floored) as f32;
PlaybackInfo {
prev_block_index: prev_block_index as usize,
prev_frame_index: prev_frame_index as usize,
k,
}
}
}
#[cfg(test)]
mod tests {
use float_eq::assert_float_eq;
use crate::context::OfflineAudioContext;
use crate::node::AudioScheduledSourceNode;
use super::*;
#[test]
fn test_audioparam_value_applies_immediately() {
let context = OfflineAudioContext::new(1, 128, 48_000.);
let options = DelayOptions {
delay_time: 0.12,
..Default::default()
};
let src = DelayNode::new(&context, options);
assert_float_eq!(src.delay_time.value(), 0.12, abs_all <= 0.);
}
#[test]
fn test_sample_accurate() {
for delay_in_samples in [128., 131., 197.].iter() {
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 256, sample_rate);
let delay = context.create_delay(2.);
delay.delay_time.set_value(delay_in_samples / sample_rate);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 256];
expected[*delay_in_samples as usize] = 1.;
assert_float_eq!(channel[..], expected[..], abs_all <= 0.00001);
}
}
#[test]
fn test_sub_sample_accurate_1() {
let delay_in_samples = 128.5;
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 256, sample_rate);
let delay = context.create_delay(2.);
delay.delay_time.set_value(delay_in_samples / sample_rate);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 256];
expected[128] = 0.5;
expected[129] = 0.5;
assert_float_eq!(channel[..], expected[..], abs_all <= 0.00001);
}
#[test]
fn test_sub_sample_accurate_2() {
let delay_in_samples = 128.8;
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 256, sample_rate);
let delay = context.create_delay(2.);
delay.delay_time.set_value(delay_in_samples / sample_rate);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 256];
expected[128] = 0.2;
expected[129] = 0.8;
assert_float_eq!(channel[..], expected[..], abs_all <= 1e-5);
}
#[test]
fn test_multichannel() {
let delay_in_samples = 128.;
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(2, 2 * 128, sample_rate);
let delay = context.create_delay(2.);
delay.delay_time.set_value(delay_in_samples / sample_rate);
delay.connect(&context.destination());
let mut two_chan_dirac = context.create_buffer(2, 256, sample_rate);
// different channels
two_chan_dirac.copy_to_channel(&[1.], 0);
two_chan_dirac.copy_to_channel(&[0., 1.], 1);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(two_chan_dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel_left = result.get_channel_data(0);
let mut expected_left = vec![0.; 256];
expected_left[128] = 1.;
assert_float_eq!(channel_left[..], expected_left[..], abs_all <= 1e-5);
let channel_right = result.get_channel_data(1);
let mut expected_right = vec![0.; 256];
expected_right[128 + 1] = 1.;
assert_float_eq!(channel_right[..], expected_right[..], abs_all <= 1e-5);
}
#[test]
fn test_input_number_of_channels_change() {
let delay_in_samples = 128.;
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(2, 3 * 128, sample_rate);
let delay = context.create_delay(2.);
delay.delay_time.set_value(delay_in_samples / sample_rate);
delay.connect(&context.destination());
let mut one_chan_dirac = context.create_buffer(1, 128, sample_rate);
one_chan_dirac.copy_to_channel(&[1.], 0);
let mut src1 = context.create_buffer_source();
src1.connect(&delay);
src1.set_buffer(one_chan_dirac);
src1.start_at(0.);
let mut two_chan_dirac = context.create_buffer(2, 256, sample_rate);
// the two channels are different
two_chan_dirac.copy_to_channel(&[1.], 0);
two_chan_dirac.copy_to_channel(&[0., 1.], 1);
// start second buffer at next block
let mut src2 = context.create_buffer_source();
src2.connect(&delay);
src2.set_buffer(two_chan_dirac);
src2.start_at(delay_in_samples as f64 / sample_rate as f64);
let result = context.start_rendering_sync();
let channel_left = result.get_channel_data(0);
let mut expected_left = vec![0.; 3 * 128];
expected_left[128] = 1.;
expected_left[256] = 1.;
assert_float_eq!(channel_left[..], expected_left[..], abs_all <= 1e-5);
let channel_right = result.get_channel_data(1);
let mut expected_right = vec![0.; 3 * 128];
expected_right[128] = 1.;
expected_right[256 + 1] = 1.;
assert_float_eq!(channel_right[..], expected_right[..], abs_all <= 1e-5);
}
#[test]
fn test_node_stays_alive_long_enough() {
// make sure there are no hidden order problem
for _ in 0..10 {
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 5 * 128, sample_rate);
// Set up a source that starts only after 5 render quanta.
// The delay writer and reader should stay alive in this period of silence.
// We set up the nodes in a separate block {} so they are dropped in the control thread,
// otherwise the lifecycle rules do not kick in
{
let delay = context.create_delay(1.);
delay.delay_time.set_value(128. / sample_rate);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
// 3rd block - play buffer
// 4th block - play silence and dropped in render thread
src.start_at(128. * 3. / sample_rate as f64);
} // src and delay nodes are dropped
let result = context.start_rendering_sync();
let mut expected = vec![0.; 5 * 128];
// source starts after 2 * 128 samples, then is delayed another 128
expected[4 * 128] = 1.;
assert_float_eq!(result.get_channel_data(0), &expected[..], abs_all <= 1e-5);
}
}
#[test]
fn test_subquantum_delay() {
for i in 0..128 {
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 128, sample_rate);
let delay = context.create_delay(1.);
delay.delay_time.set_value(i as f32 / sample_rate);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 128];
expected[i] = 1.;
assert_float_eq!(channel[..], expected[..], abs_all <= 1e-5);
}
}
#[test]
fn test_min_delay_when_in_loop() {
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 256, sample_rate);
let delay = context.create_delay(1.);
delay.delay_time.set_value(1. / sample_rate);
delay.connect(&context.destination());
// create a loop with a gain at 0 to avoid feedback
// therefore delay_time will be clamped to 128 * sample_rate by the Reader
let gain = context.create_gain();
gain.gain().set_value(0.);
delay.connect(&gain);
gain.connect(&delay);
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 256];
expected[128] = 1.;
assert_float_eq!(channel[..], expected[..], abs_all <= 0.);
}
// reproduce wpt tests from
// - the-delaynode-interface/delaynode-max-default-delay.html
// - the-delaynode-interface/delaynode-max-nondefault-delay.html
#[test]
fn test_max_delay() {
use std::f32::consts::PI;
for &delay_time_seconds in [1., 1.5].iter() {
let sample_rate = 44100.0;
let render_length = 4 * sample_rate as usize;
let mut context = OfflineAudioContext::new(1, render_length, sample_rate);
// create 2 seconds tone buffer at 20Hz
let tone_frequency = 20.;
let tone_length_seconds = 2.;
let tone_length = tone_length_seconds as usize * sample_rate as usize;
let mut tone_buffer = context.create_buffer(1, tone_length, sample_rate);
let tone_data = tone_buffer.get_channel_data_mut(0);
for (i, s) in tone_data.iter_mut().enumerate() {
*s = (tone_frequency * 2.0 * PI * i as f32 / sample_rate).sin();
}
let mut buffer_source = context.create_buffer_source();
buffer_source.set_buffer(tone_buffer.clone());
let delay = context.create_delay(delay_time_seconds); // max delay defaults to 1 second
delay.delay_time.set_value(delay_time_seconds as f32);
buffer_source.connect(&delay);
delay.connect(&context.destination());
buffer_source.start_at(0.);
let output = context.start_rendering_sync();
let source = tone_buffer.get_channel_data(0);
let rendered = output.get_channel_data(0);
let delay_time_frames = (delay_time_seconds * sample_rate as f64) as usize;
let tone_length_frames = (tone_length_seconds * sample_rate as f64) as usize;
for (i, s) in rendered.iter().enumerate() {
if i < delay_time_frames {
assert_eq!(*s, 0.);
} else if i >= delay_time_frames && i < delay_time_frames + tone_length_frames {
let j = i - delay_time_frames;
assert_eq!(*s, source[j]);
} else {
assert_eq!(*s, 0.);
}
}
}
}
#[test]
fn test_max_delay_smaller_than_quantum_size() {
// regression test that even if the declared max_delay_time is smaller than
// a quantum duration, the node internally clamps it to quantum duration so
// that everything works even if order of processing is not guaranteed
// (i.e. when delay is in a loop)
for _ in 0..10 {
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 256, sample_rate);
// this will be internally clamped to 128 * sample_rate
let delay = context.create_delay((64. / sample_rate).into());
// this will be clamped to 128 * sample_rate by the Reader
delay.delay_time.set_value(64. / sample_rate);
delay.connect(&context.destination());
// create a loop with a gain at 0 to avoid feedback
let gain = context.create_gain();
gain.gain().set_value(0.);
delay.connect(&gain);
gain.connect(&delay);
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 256];
expected[128] = 1.;
assert_float_eq!(channel[..], expected[..], abs_all <= 0.);
}
}
// test_max_delay_multiple_of_quantum_size_x
// are regression test that delay node has always enough internal buffer size
// when max_delay is a multiple of quantum size and delay == max_delay.
// This bug only occurs when the Writer is called before than the Reader,
// which is the case when not in a loop
#[test]
fn test_max_delay_multiple_of_quantum_size_1() {
// set delay and max delay time exactly 1 render quantum
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 256, sample_rate);
let max_delay = 128. / sample_rate;
let delay = context.create_delay(max_delay.into());
delay.delay_time.set_value(max_delay);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 256];
expected[128] = 1.;
assert_float_eq!(channel[..], expected[..], abs_all <= 1e-5);
}
#[test]
fn test_max_delay_multiple_of_quantum_size_2() {
// set delay and max delay time exactly 2 render quantum
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 3 * 128, sample_rate);
let max_delay = 128. * 2. / sample_rate;
let delay = context.create_delay(max_delay.into());
delay.delay_time.set_value(max_delay);
delay.connect(&context.destination());
let mut dirac = context.create_buffer(1, 1, sample_rate);
dirac.copy_to_channel(&[1.], 0);
let mut src = context.create_buffer_source();
src.connect(&delay);
src.set_buffer(dirac);
src.start_at(0.);
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 3 * 128];
expected[256] = 1.;
assert_float_eq!(channel[..], expected[..], abs_all <= 1e-5);
}
#[test]
fn test_subquantum_delay_dynamic_lifetime() {
let sample_rate = 48_000.;
let mut context = OfflineAudioContext::new(1, 3 * 128, sample_rate);
// Setup a source that emits for 120 frames, so it deallocates after the first render
// quantum. Delay the signal with 64 frames. Deallocation of the delay writer might trick
// the delay reader into thinking it is part of a cycle, and would clamp the delay to a
// full render quantum.
{
let delay = context.create_delay(1.);
delay.delay_time.set_value(64_f32 / sample_rate);
delay.connect(&context.destination());
// emit 120 samples
let mut src = context.create_constant_source();
src.connect(&delay);
src.start_at(0.);
src.stop_at(120. / sample_rate as f64);
} // drop all nodes, trigger dynamic lifetimes
let result = context.start_rendering_sync();
let channel = result.get_channel_data(0);
let mut expected = vec![0.; 3 * 128];
expected[64..64 + 120].fill(1.);
assert_float_eq!(channel[..], expected[..], abs_all <= 1e-5);
}
}