1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
use std::any::Any;
use std::sync::Arc;

use realfft::{num_complex::Complex, ComplexToReal, RealFftPlanner, RealToComplex};

use crate::buffer::AudioBuffer;
use crate::context::{AudioContextRegistration, BaseAudioContext};
use crate::render::{AudioParamValues, AudioProcessor, AudioRenderQuantum, RenderScope};
use crate::RENDER_QUANTUM_SIZE;

use super::{AudioNode, ChannelConfig, ChannelConfigOptions, ChannelInterpretation};

/// Scale buffer by an equal-power normalization
// see - <https://webaudio.github.io/web-audio-api/#dom-convolvernode-normalize>
fn normalize_buffer(buffer: &AudioBuffer) -> f32 {
    let gain_calibration = 0.00125;
    let gain_calibration_sample_rate = 44100.;
    let min_power = 0.000125;

    // Normalize by RMS power.
    let number_of_channels = buffer.number_of_channels();
    let length = buffer.length();
    let sample_rate = buffer.sample_rate();

    let mut power: f32 = buffer
        .channels()
        .iter()
        .map(|c| c.as_slice().iter().map(|&s| s * s).sum::<f32>())
        .sum();

    power = (power / (number_of_channels * length) as f32).sqrt();

    // Protect against accidental overload.
    if !power.is_finite() || power.is_nan() || power < min_power {
        power = min_power;
    }

    let mut scale = 1. / power;

    // Calibrate to make perceived volume same as unprocessed.
    scale *= gain_calibration;

    // Scale depends on sample-rate.
    scale *= gain_calibration_sample_rate / sample_rate;

    // True-stereo compensation.
    if number_of_channels == 4 {
        scale *= 0.5;
    }

    scale
}

/// `ConvolverNode` options
//dictionary ConvolverOptions : AudioNodeOptions {
//  AudioBuffer? buffer;
//  boolean disableNormalization = false;
//};
#[derive(Clone, Debug, Default)]
pub struct ConvolverOptions {
    /// The desired buffer for the ConvolverNode
    pub buffer: Option<AudioBuffer>,
    /// The opposite of the desired initial value for the normalize attribute
    pub disable_normalization: bool,
    /// AudioNode options
    pub channel_config: ChannelConfigOptions,
}

/// Processing node which applies a linear convolution effect given an impulse response.
///
/// - MDN documentation: <https://developer.mozilla.org/en-US/docs/Web/API/ConvolverNode>
/// - specification: <https://webaudio.github.io/web-audio-api/#ConvolverNode>
/// - see also: [`BaseAudioContext::create_convolver`]
///
/// The current implementation only handles mono-to-mono convolutions. The provided impulse
/// response buffer and the input signal will be downmixed appropriately.
///
/// # Usage
///
/// ```no_run
/// use std::fs::File;
///
/// use web_audio_api::context::{AudioContext, BaseAudioContext};
/// use web_audio_api::node::{AudioNode, AudioScheduledSourceNode, ConvolverNode, ConvolverOptions};
///
/// let context = AudioContext::default();
/// let file = File::open("samples/vocals-dry.wav").unwrap();
/// let audio_buffer = context.decode_audio_data_sync(file).unwrap();
///
/// let impulse_file = File::open("samples/small-room-response.wav").unwrap();
/// let impulse_buffer = context.decode_audio_data_sync(impulse_file).unwrap();
///
/// let mut src = context.create_buffer_source();
/// src.set_buffer(audio_buffer);
///
/// let mut convolve = ConvolverNode::new(&context, ConvolverOptions::default());
/// convolve.set_buffer(impulse_buffer);
///
/// src.connect(&convolve);
/// convolve.connect(&context.destination());
/// src.start();
/// std::thread::sleep(std::time::Duration::from_millis(4_000));
/// ```
///
/// # Examples
///
/// - `cargo run --release --example convolution`
///
pub struct ConvolverNode {
    /// Represents the node instance and its associated audio context
    registration: AudioContextRegistration,
    /// Info about audio node channel configuration
    channel_config: ChannelConfig,
    /// Perform equal power normalization on response buffer
    normalize: bool,
    /// The response buffer, nullable
    buffer: Option<AudioBuffer>,
}

impl AudioNode for ConvolverNode {
    fn registration(&self) -> &AudioContextRegistration {
        &self.registration
    }

    fn channel_config(&self) -> &ChannelConfig {
        &self.channel_config
    }

    fn number_of_inputs(&self) -> usize {
        1
    }

    fn number_of_outputs(&self) -> usize {
        1
    }
}

impl ConvolverNode {
    /// returns a `ConvolverNode` instance
    ///
    /// # Arguments
    ///
    /// * `context` - audio context in which the audio node will live.
    /// * `options` - convolver options
    ///
    /// # Panics
    ///
    /// Panics when an AudioBuffer is provided via the `ConvolverOptions` with a sample rate
    /// different from the audio context sample rate.
    pub fn new<C: BaseAudioContext>(context: &C, options: ConvolverOptions) -> Self {
        let ConvolverOptions {
            buffer,
            disable_normalization,
            channel_config,
        } = options;

        let mut node = context.base().register(move |registration| {
            let renderer = ConvolverRenderer { inner: None };

            let node = Self {
                registration,
                channel_config: channel_config.into(),
                normalize: !disable_normalization,
                buffer: None,
            };

            (node, Box::new(renderer))
        });

        // renderer has been sent to render thread, we can send it messages
        if let Some(buffer) = buffer {
            node.set_buffer(buffer);
        }

        node
    }

    /// Get the current impulse response buffer
    pub fn buffer(&self) -> Option<&AudioBuffer> {
        self.buffer.as_ref()
    }

    /// Set or update the impulse response buffer
    ///
    /// # Panics
    ///
    /// Panics when the sample rate of the provided AudioBuffer differs from the audio context
    /// sample rate.
    pub fn set_buffer(&mut self, buffer: AudioBuffer) {
        // If the buffer number of channels is not 1, 2, 4, or if the sample-rate of the buffer is
        // not the same as the sample-rate of its associated BaseAudioContext, a NotSupportedError
        // MUST be thrown.

        let sample_rate = buffer.sample_rate();
        assert_eq!(
            sample_rate,
            self.context().sample_rate(),
            "NotSupportedError - sample rate of the convolution buffer must match the audio context"
        );

        let number_of_channels = buffer.number_of_channels();
        assert!(
            [1, 2, 4].contains(&number_of_channels),
            "NotSupportedError - the convolution buffer must consist of 1, 2 or 4 channels"
        );

        // normalize before padding because the length of the buffer affects the scale
        let scale = if self.normalize {
            normalize_buffer(&buffer)
        } else {
            1.
        };

        // Pad the response buffer with zeroes so its size is a power of 2, with 2 * 128 as min size
        let length = buffer.length();
        let padded_length = length.next_power_of_two().max(2 * RENDER_QUANTUM_SIZE);
        let samples: Vec<_> = (0..number_of_channels)
            .map(|_| {
                let mut samples = vec![0.; padded_length];
                samples[..length]
                    .iter_mut()
                    .zip(buffer.get_channel_data(0))
                    .for_each(|(o, i)| *o = *i * scale);
                samples
            })
            .collect();

        let padded_buffer = AudioBuffer::from(samples, sample_rate);
        let convolve = ConvolverRendererInner::new(padded_buffer);

        self.registration.post_message(Some(convolve));
        self.buffer = Some(buffer);
    }

    /// Denotes if the response buffer will be scaled with an equal-power normalization
    pub fn normalize(&self) -> bool {
        self.normalize
    }

    /// Update the `normalize` setting. This will only have an effect when `set_buffer` is called.
    pub fn set_normalize(&mut self, value: bool) {
        self.normalize = value;
    }
}

fn roll_zero<T: Default + Copy>(signal: &mut [T], n: usize) {
    // roll array by n elements
    // zero out the last n elements
    let len = signal.len();
    signal.copy_within(n.., 0);
    signal[len - n..].fill(T::default());
}

struct Fft {
    fft_forward: Arc<dyn RealToComplex<f32>>,
    fft_inverse: Arc<dyn ComplexToReal<f32>>,
    fft_input: Vec<f32>,
    fft_scratch: Vec<Complex<f32>>,
    fft_output: Vec<Complex<f32>>,
}

impl Fft {
    fn new(length: usize) -> Self {
        let mut fft_planner = RealFftPlanner::<f32>::new();

        let fft_forward = fft_planner.plan_fft_forward(length);
        let fft_inverse = fft_planner.plan_fft_inverse(length);

        let fft_input = fft_forward.make_input_vec();
        let fft_scratch = fft_forward.make_scratch_vec();
        let fft_output = fft_forward.make_output_vec();

        Self {
            fft_forward,
            fft_inverse,
            fft_input,
            fft_scratch,
            fft_output,
        }
    }

    fn real(&mut self) -> &mut [f32] {
        &mut self.fft_input[..]
    }

    fn complex(&mut self) -> &mut [Complex<f32>] {
        &mut self.fft_output[..]
    }

    fn process(&mut self) -> &[Complex<f32>] {
        self.fft_forward
            .process_with_scratch(
                &mut self.fft_input,
                &mut self.fft_output,
                &mut self.fft_scratch,
            )
            .unwrap();
        &self.fft_output[..]
    }

    fn inverse(&mut self) -> &[f32] {
        self.fft_inverse
            .process_with_scratch(
                &mut self.fft_output,
                &mut self.fft_input,
                &mut self.fft_scratch,
            )
            .unwrap();
        &self.fft_input[..]
    }
}

struct ConvolverRendererInner {
    num_ir_blocks: usize,
    h: Vec<Complex<f32>>,
    fdl: Vec<Complex<f32>>,
    out: Vec<f32>,
    fft2: Fft,
}

impl ConvolverRendererInner {
    fn new(response: AudioBuffer) -> Self {
        // mono processing only for now
        let response = response.channel_data(0).as_slice();

        let mut fft2 = Fft::new(2 * RENDER_QUANTUM_SIZE);
        let p = response.len();

        let num_ir_blocks = p / RENDER_QUANTUM_SIZE;

        let mut h = vec![Complex::default(); num_ir_blocks * 2 * RENDER_QUANTUM_SIZE];
        for (resp_fft, resp) in h
            .chunks_mut(2 * RENDER_QUANTUM_SIZE)
            .zip(response.chunks(RENDER_QUANTUM_SIZE))
        {
            // fill resp_fft with FFT of resp.zero_pad(RENDER_QUANTUM_SIZE)
            fft2.real()[..RENDER_QUANTUM_SIZE].copy_from_slice(resp);
            fft2.real()[RENDER_QUANTUM_SIZE..].fill(0.);
            resp_fft[..fft2.complex().len()].copy_from_slice(fft2.process());
        }

        let fdl = vec![Complex::default(); 2 * RENDER_QUANTUM_SIZE * num_ir_blocks];
        let out = vec![0.; 2 * RENDER_QUANTUM_SIZE - 1];

        Self {
            num_ir_blocks,
            h,
            fdl,
            out,
            fft2,
        }
    }

    fn process(&mut self, input: &[f32], output: &mut [f32]) {
        self.fft2.real()[..RENDER_QUANTUM_SIZE].copy_from_slice(input);
        self.fft2.real()[RENDER_QUANTUM_SIZE..].fill(0.);
        let spectrum = self.fft2.process();

        self.fdl
            .chunks_mut(2 * RENDER_QUANTUM_SIZE)
            .zip(self.h.chunks(2 * RENDER_QUANTUM_SIZE))
            .for_each(|(fdl_c, h_c)| {
                fdl_c
                    .iter_mut()
                    .zip(h_c)
                    .zip(spectrum)
                    .for_each(|((f, h), s)| *f += h * s)
            });

        let c_len = self.fft2.complex().len();
        self.fft2.complex().copy_from_slice(&self.fdl[..c_len]);
        let inverse = self.fft2.inverse();
        self.out.iter_mut().zip(inverse).for_each(|(o, i)| {
            *o += i / (2 * RENDER_QUANTUM_SIZE) as f32;
        });

        output.copy_from_slice(&self.out[..RENDER_QUANTUM_SIZE]);

        roll_zero(&mut self.fdl[..], 2 * RENDER_QUANTUM_SIZE);
        roll_zero(&mut self.out[..], RENDER_QUANTUM_SIZE);
    }

    fn tail(&mut self, output: &mut AudioRenderQuantum) -> bool {
        if self.num_ir_blocks == 0 {
            output.make_silent();
            return false;
        }

        self.num_ir_blocks -= 1;

        let c_len = self.fft2.complex().len();
        self.fft2.complex().copy_from_slice(&self.fdl[..c_len]);
        let inverse = self.fft2.inverse();
        self.out.iter_mut().zip(inverse).for_each(|(o, i)| {
            *o += i / (2 * RENDER_QUANTUM_SIZE) as f32;
        });

        output
            .channel_data_mut(0)
            .copy_from_slice(&self.out[..RENDER_QUANTUM_SIZE]);

        roll_zero(&mut self.fdl[..], 2 * RENDER_QUANTUM_SIZE);
        roll_zero(&mut self.out[..], RENDER_QUANTUM_SIZE);

        self.num_ir_blocks > 0
    }
}

struct ConvolverRenderer {
    inner: Option<ConvolverRendererInner>,
}

impl AudioProcessor for ConvolverRenderer {
    fn process(
        &mut self,
        inputs: &[AudioRenderQuantum],
        outputs: &mut [AudioRenderQuantum],
        _params: AudioParamValues<'_>,
        _scope: &RenderScope,
    ) -> bool {
        // single input/output node
        let input = &inputs[0];
        let output = &mut outputs[0];
        output.force_mono();

        let convolver = match &mut self.inner {
            None => {
                // no convolution buffer set, passthrough
                *output = input.clone();
                return !input.is_silent();
            }
            Some(convolver) => convolver,
        };

        // handle tail time
        if input.is_silent() {
            return convolver.tail(output);
        }

        let mut mono = input.clone();
        mono.mix(1, ChannelInterpretation::Speakers);
        let input = &mono.channel_data(0)[..];
        let output = &mut output.channel_data_mut(0)[..];

        convolver.process(input, output);

        true
    }

    fn onmessage(&mut self, msg: &mut dyn Any) {
        if let Some(convolver) = msg.downcast_mut::<Option<ConvolverRendererInner>>() {
            // Avoid deallocation in the render thread by swapping the convolver.
            std::mem::swap(&mut self.inner, convolver);
            return;
        }

        log::warn!("ConvolverRenderer: Dropping incoming message {msg:?}");
    }
}

#[cfg(test)]
mod tests {
    use float_eq::assert_float_eq;

    use crate::context::{BaseAudioContext, OfflineAudioContext};
    use crate::node::{AudioBufferSourceNode, AudioBufferSourceOptions, AudioScheduledSourceNode};

    use super::*;

    #[test]
    fn test_roll_zero() {
        let mut input = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        roll_zero(&mut input, 3);
        assert_eq!(&input, &[4, 5, 6, 7, 8, 9, 10, 0, 0, 0]);
    }

    #[test]
    #[should_panic]
    fn test_buffer_sample_rate_matches() {
        let context = OfflineAudioContext::new(1, 128, 44100.);

        let ir = vec![1.];
        let ir = AudioBuffer::from(vec![ir; 1], 48000.); // sample_rate differs
        let options = ConvolverOptions {
            buffer: Some(ir),
            ..ConvolverOptions::default()
        };

        let _ = ConvolverNode::new(&context, options);
    }

    #[test]
    #[should_panic]
    fn test_buffer_must_have_1_2_4_channels() {
        let context = OfflineAudioContext::new(1, 128, 48000.);

        let ir = vec![1.];
        let ir = AudioBuffer::from(vec![ir; 3], 48000.); // three channels
        let options = ConvolverOptions {
            buffer: Some(ir),
            ..ConvolverOptions::default()
        };

        let _ = ConvolverNode::new(&context, options);
    }

    #[test]
    fn test_constructor_options_buffer() {
        let sample_rate = 44100.;
        let mut context = OfflineAudioContext::new(1, 10, sample_rate);

        let ir = vec![1.];
        let calibration = 0.00125;
        let channel_data = vec![0., 1., 0., -1., 0.];
        let expected = [0., calibration, 0., -calibration, 0., 0., 0., 0., 0., 0.];

        // identity ir
        let ir = AudioBuffer::from(vec![ir; 1], sample_rate);
        let options = ConvolverOptions {
            buffer: Some(ir),
            ..ConvolverOptions::default()
        };
        let conv = ConvolverNode::new(&context, options);
        conv.connect(&context.destination());

        let buffer = AudioBuffer::from(vec![channel_data; 1], sample_rate);
        let mut src = context.create_buffer_source();
        src.connect(&conv);
        src.set_buffer(buffer);
        src.start();

        let output = context.start_rendering_sync();

        assert_float_eq!(output.get_channel_data(0), &expected[..], abs_all <= 1E-6);
    }

    fn test_convolve(signal: &[f32], impulse_resp: Option<Vec<f32>>, length: usize) -> AudioBuffer {
        let sample_rate = 44100.;
        let mut context = OfflineAudioContext::new(1, length, sample_rate);

        let input = AudioBuffer::from(vec![signal.to_vec()], sample_rate);
        let mut src = AudioBufferSourceNode::new(&context, AudioBufferSourceOptions::default());
        src.set_buffer(input);
        src.start();

        let mut conv = ConvolverNode::new(&context, ConvolverOptions::default());
        if let Some(ir) = impulse_resp {
            conv.set_buffer(AudioBuffer::from(vec![ir.to_vec()], sample_rate));
        }

        src.connect(&conv);
        conv.connect(&context.destination());

        context.start_rendering_sync()
    }

    #[test]
    fn test_passthrough() {
        let output = test_convolve(&[0., 1., 0., -1., 0.], None, 10);
        let expected = [0., 1., 0., -1., 0., 0., 0., 0., 0., 0.];
        assert_float_eq!(output.get_channel_data(0), &expected[..], abs_all <= 1E-6);
    }

    #[test]
    fn test_empty() {
        let ir = vec![];
        let output = test_convolve(&[0., 1., 0., -1., 0.], Some(ir), 10);
        let expected = [0.; 10];
        assert_float_eq!(output.get_channel_data(0), &expected[..], abs_all <= 1E-6);
    }

    #[test]
    fn test_zeroed() {
        let ir = vec![0., 0., 0., 0., 0., 0.];
        let output = test_convolve(&[0., 1., 0., -1., 0.], Some(ir), 10);
        let expected = [0.; 10];
        assert_float_eq!(output.get_channel_data(0), &expected[..], abs_all <= 1E-6);
    }

    #[test]
    fn test_identity() {
        let ir = vec![1.];
        let calibration = 0.00125;
        let output = test_convolve(&[0., 1., 0., -1., 0.], Some(ir), 10);
        let expected = [0., calibration, 0., -calibration, 0., 0., 0., 0., 0., 0.];
        assert_float_eq!(output.get_channel_data(0), &expected[..], abs_all <= 1E-6);
    }

    #[test]
    fn test_two_id() {
        let ir = vec![1., 1.];
        let calibration = 0.00125;
        let output = test_convolve(&[0., 1., 0., -1., 0.], Some(ir), 10);
        let expected = [
            0.,
            calibration,
            calibration,
            -calibration,
            -calibration,
            0.,
            0.,
            0.,
            0.,
            0.,
        ];
        assert_float_eq!(output.get_channel_data(0), &expected[..], abs_all <= 1E-6);
    }

    #[test]
    fn test_should_have_tail_time() {
        // impulse response of length 256
        const IR_LEN: usize = 256;
        let ir = vec![1.; IR_LEN];

        // unity input signal
        let input = &[1.];

        // render into a buffer of size 512
        let output = test_convolve(input, Some(ir), 512);

        // we expect non-zero output in the range 0 to IR_LEN
        let output = output.channel_data(0).as_slice();
        assert!(!output[..IR_LEN].iter().any(|v| *v <= 1E-6));
        assert_float_eq!(&output[IR_LEN..], &[0.; 512 - IR_LEN][..], abs_all <= 1E-6);
    }
}