1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
use crate::analysis::{
Analyser, AnalyserRingBuffer, DEFAULT_FFT_SIZE, DEFAULT_MAX_DECIBELS, DEFAULT_MIN_DECIBELS,
DEFAULT_SMOOTHING_TIME_CONSTANT,
};
use crate::context::{AudioContextRegistration, BaseAudioContext};
use crate::render::{AudioParamValues, AudioProcessor, AudioRenderQuantum, RenderScope};
use super::{AudioNode, ChannelConfig, ChannelConfigOptions, ChannelInterpretation};
/// Options for constructing an [`AnalyserNode`]
// dictionary AnalyserOptions : AudioNodeOptions {
// unsigned long fftSize = 2048;
// double maxDecibels = -30;
// double minDecibels = -100;
// double smoothingTimeConstant = 0.8;
// };
#[derive(Clone, Debug)]
pub struct AnalyserOptions {
pub fft_size: usize,
pub max_decibels: f64,
pub min_decibels: f64,
pub smoothing_time_constant: f64,
pub channel_config: ChannelConfigOptions,
}
impl Default for AnalyserOptions {
fn default() -> Self {
Self {
fft_size: DEFAULT_FFT_SIZE,
max_decibels: DEFAULT_MAX_DECIBELS,
min_decibels: DEFAULT_MIN_DECIBELS,
smoothing_time_constant: DEFAULT_SMOOTHING_TIME_CONSTANT,
channel_config: ChannelConfigOptions::default(),
}
}
}
/// `AnalyserNode` represents a node able to provide real-time frequency and
/// time-domain analysis information.
///
/// It is an AudioNode that passes the audio stream unchanged from the input to
/// the output, but allows you to take the generated data, process it, and create
/// audio visualizations..
///
/// - MDN documentation: <https://developer.mozilla.org/en-US/docs/Web/API/AnalyserNode>
/// - specification: <https://webaudio.github.io/web-audio-api/#AnalyserNode>
/// - see also: [`BaseAudioContext::create_analyser`]
///
/// # Usage
///
/// ```no_run
/// use web_audio_api::context::{BaseAudioContext, AudioContext};
/// use web_audio_api::node::{AudioNode, AudioScheduledSourceNode};
///
/// let context = AudioContext::default();
///
/// let mut analyser = context.create_analyser();
/// analyser.connect(&context.destination());
///
/// let mut osc = context.create_oscillator();
/// osc.frequency().set_value(200.);
/// osc.connect(&analyser);
/// osc.start();
///
/// let mut bins = vec![0.; analyser.frequency_bin_count()];
///
///
/// loop {
/// analyser.get_float_frequency_data(&mut bins);
/// println!("{:?}", &bins[0..20]); // print 20 first bins
/// std::thread::sleep(std::time::Duration::from_millis(1000));
/// }
/// ```
///
/// # Examples
///
/// - `cargo run --release --example analyser`
/// - `cd showcase/mic_playback && cargo run --release`
///
pub struct AnalyserNode {
registration: AudioContextRegistration,
channel_config: ChannelConfig,
analyser: Analyser,
}
impl AudioNode for AnalyserNode {
fn registration(&self) -> &AudioContextRegistration {
&self.registration
}
fn channel_config(&self) -> &ChannelConfig {
&self.channel_config
}
fn number_of_inputs(&self) -> usize {
1
}
fn number_of_outputs(&self) -> usize {
1
}
}
impl AnalyserNode {
pub fn new<C: BaseAudioContext>(context: &C, options: AnalyserOptions) -> Self {
context.register(move |registration| {
let fft_size = options.fft_size;
let smoothing_time_constant = options.smoothing_time_constant;
let min_decibels = options.min_decibels;
let max_decibels = options.max_decibels;
let mut analyser = Analyser::new();
analyser.set_fft_size(fft_size);
analyser.set_smoothing_time_constant(smoothing_time_constant);
analyser.set_decibels(min_decibels, max_decibels);
let render = AnalyserRenderer {
ring_buffer: analyser.get_ring_buffer_clone(),
};
let node = AnalyserNode {
registration,
channel_config: options.channel_config.into(),
analyser,
};
(node, Box::new(render))
})
}
/// The size of the FFT used for frequency-domain analysis (in sample-frames)
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn fft_size(&self) -> usize {
self.analyser.fft_size()
}
/// Set FFT size
///
/// # Panics
///
/// This function panics if fft_size is not a power of two or not in the range [32, 32768]
pub fn set_fft_size(&mut self, fft_size: usize) {
self.analyser.set_fft_size(fft_size);
}
/// Time averaging parameter with the last analysis frame.
/// A value from 0 -> 1 where 0 represents no time averaging with the last
/// analysis frame. The default value is 0.8.
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn smoothing_time_constant(&self) -> f64 {
self.analyser.smoothing_time_constant()
}
/// Set smoothing time constant
///
/// # Panics
///
/// This function panics if the value is set to a value less than 0 or more than 1.
pub fn set_smoothing_time_constant(&mut self, value: f64) {
self.analyser.set_smoothing_time_constant(value);
}
/// Minimum power value in the scaling range for the FFT analysis data for
/// conversion to unsigned byte values. The default value is -100.
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn min_decibels(&self) -> f64 {
self.analyser.min_decibels()
}
/// Set min decibels
///
/// # Panics
///
/// This function panics if the value is set to a value more than or equal
/// to max decibels.
pub fn set_min_decibels(&mut self, value: f64) {
self.analyser.set_decibels(value, self.max_decibels());
}
/// Maximum power value in the scaling range for the FFT analysis data for
/// conversion to unsigned byte values. The default value is -30.
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn max_decibels(&self) -> f64 {
self.analyser.max_decibels()
}
/// Set max decibels
///
/// # Panics
///
/// This function panics if the value is set to a value less than or equal
/// to min decibels.
pub fn set_max_decibels(&mut self, value: f64) {
self.analyser.set_decibels(self.min_decibels(), value);
}
/// Number of bins in the FFT results, is half the FFT size
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn frequency_bin_count(&self) -> usize {
self.analyser.frequency_bin_count()
}
/// Copy the current time domain data as f32 values into the provided buffer
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn get_float_time_domain_data(&mut self, buffer: &mut [f32]) {
self.analyser.get_float_time_domain_data(buffer);
}
/// Copy the current time domain data as u8 values into the provided buffer
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn get_byte_time_domain_data(&mut self, buffer: &mut [u8]) {
self.analyser.get_byte_time_domain_data(buffer);
}
/// Copy the current frequency data into the provided buffer
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn get_float_frequency_data(&mut self, buffer: &mut [f32]) {
let current_time = self.registration.context().current_time();
self.analyser.get_float_frequency_data(buffer, current_time);
}
/// Copy the current frequency data scaled between min_decibels and
/// max_decibels into the provided buffer
///
/// # Panics
///
/// This method may panic if the lock to the inner analyser is poisoned
pub fn get_byte_frequency_data(&mut self, buffer: &mut [u8]) {
let current_time = self.registration.context().current_time();
self.analyser.get_byte_frequency_data(buffer, current_time);
}
}
struct AnalyserRenderer {
ring_buffer: AnalyserRingBuffer,
}
impl AudioProcessor for AnalyserRenderer {
fn process(
&mut self,
inputs: &[AudioRenderQuantum],
outputs: &mut [AudioRenderQuantum],
_params: AudioParamValues<'_>,
_scope: &RenderScope,
) -> bool {
// single input/output node
let input = &inputs[0];
let output = &mut outputs[0];
// pass through input
*output = input.clone();
// down mix to mono
let mut mono = input.clone();
mono.mix(1, ChannelInterpretation::Speakers);
// add current input to ring buffer
let data = mono.channel_data(0).as_ref();
self.ring_buffer.write(data);
// no tail-time
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::context::{
AudioContext, AudioContextOptions, BaseAudioContext, OfflineAudioContext,
};
use crate::node::{AudioNode, AudioScheduledSourceNode};
use float_eq::assert_float_eq;
#[test]
fn test_analyser_after_closed() {
let options = AudioContextOptions {
sink_id: "none".into(),
..AudioContextOptions::default()
};
let context = AudioContext::new(options);
let mut src = context.create_constant_source();
src.start();
let mut analyser = context.create_analyser();
src.connect(&analyser);
// allow buffer to fill
std::thread::sleep(std::time::Duration::from_millis(20));
let mut buffer = vec![0.; 128];
analyser.get_float_time_domain_data(&mut buffer);
assert_float_eq!(&buffer[..], &[1.; 128][..], abs_all <= 0.); // constant source of 1.
// close context
context.close_sync();
std::thread::sleep(std::time::Duration::from_millis(50));
let mut buffer = vec![0.; 128];
analyser.get_float_time_domain_data(&mut buffer); // should not crash or hang
// should contain the most recent frames available
assert_float_eq!(&buffer[..], &[1.; 128][..], abs_all <= 0.);
}
#[test]
fn test_construct_decibels() {
let context = OfflineAudioContext::new(1, 128, 44_100.);
let options = AnalyserOptions {
min_decibels: -10.,
max_decibels: 20.,
..AnalyserOptions::default()
};
let _ = AnalyserNode::new(&context, options);
}
}