1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//! PeriodicWave interface
use std::f32::consts::PI;
use std::sync::Arc;

use crate::context::BaseAudioContext;

use crate::node::TABLE_LENGTH_USIZE;

/// Options for constructing a [`PeriodicWave`]
#[derive(Debug, Default, Clone)]
pub struct PeriodicWaveOptions {
    /// The real parameter represents an array of cosine terms of Fourier series.
    ///
    /// The first element (index 0) represents the DC-offset.
    /// This offset has to be given but will not be taken into account
    /// to build the custom periodic waveform.
    ///
    /// The following elements (index 1 and more) represent the fundamental and
    /// harmonics of the periodic waveform.
    pub real: Option<Vec<f32>>,
    /// The imag parameter represents an array of sine terms of Fourier series.
    ///
    /// The first element (index 0) will not be taken into account
    /// to build the custom periodic waveform.
    ///
    /// The following elements (index 1 and more) represent the fundamental and
    /// harmonics of the periodic waveform.
    pub imag: Option<Vec<f32>>,
    /// By default PeriodicWave is build with normalization enabled (disable_normalization = false).
    /// In this case, a peak normalization is applied to the given custom periodic waveform.
    ///
    /// If disable_normalization is enabled (disable_normalization = true), the normalization is
    /// defined by the periodic waveform characteristics (img, and real fields).
    pub disable_normalization: bool,
}

/// `PeriodicWave` represents an arbitrary periodic waveform to be used with an `OscillatorNode`.
///
/// - MDN documentation: <https://developer.mozilla.org/en-US/docs/Web/API/PeriodicWave>
/// - specification: <https://webaudio.github.io/web-audio-api/#PeriodicWave>
/// - see also: [`BaseAudioContext::create_periodic_wave`]
/// - see also: [`OscillatorNode`](crate::node::OscillatorNode)
///
/// # Usage
///
/// ```no_run
/// use web_audio_api::context::{BaseAudioContext, AudioContext};
/// use web_audio_api::{PeriodicWave, PeriodicWaveOptions};
/// use web_audio_api::node::{AudioNode, AudioScheduledSourceNode};
///
/// let context = AudioContext::default();
///
/// // generate a simple waveform with 2 harmonics
/// let options = PeriodicWaveOptions {
///   real: Some(vec![0., 0., 0.]),
///   imag: Some(vec![0., 0.5, 0.5]),
///   disable_normalization: false,
/// };
///
/// let periodic_wave = PeriodicWave::new(&context, options);
///
/// let mut osc = context.create_oscillator();
/// osc.set_periodic_wave(periodic_wave);
/// osc.connect(&context.destination());
/// osc.start();
/// ```
/// # Examples
///
/// - `cargo run --release --example oscillators`
///
// Basically a wrapper around Arc<Vec<f32>>, so `PeriodicWave`s are cheap to clone
#[derive(Debug, Clone, Default)]
pub struct PeriodicWave {
    wavetable: Arc<Vec<f32>>,
}

impl PeriodicWave {
    /// Returns a `PeriodicWave`
    ///
    /// # Arguments
    ///
    /// * `real` - The real parameter represents an array of cosine terms of Fourier series.
    /// * `imag` - The imag parameter represents an array of sine terms of Fourier series.
    /// * `constraints` - The constraints parameter specifies the normalization mode of the `PeriodicWave`
    ///
    /// # Panics
    ///
    /// Will panic if:
    ///
    /// * `real` is defined and its length is less than 2
    /// * `imag` is defined and its length is less than 2
    /// * `real` and `imag` are defined and theirs lengths are not equal
    /// * `PeriodicWave` is more than 8192 components
    //
    // @notes:
    // - Current implementation is very naive and could be improved using inverse
    // FFT or table lookup on SINETABLE. Such performance improvements should be
    // however tested also against this implementation.
    // - Built-in types of the `OscillatorNode` should use periodic waves
    // c.f. https://webaudio.github.io/web-audio-api/#oscillator-coefficients
    // - The question of bandlimited oscillators should also be handled
    // e.g. https://www.dafx12.york.ac.uk/papers/dafx12_submission_69.pdf
    pub fn new<C: BaseAudioContext>(_context: &C, options: PeriodicWaveOptions) -> Self {
        let PeriodicWaveOptions {
            real,
            imag,
            disable_normalization,
        } = options;

        let (real, imag) = match (real, imag) {
            (Some(r), Some(i)) => {
                if r.len() != i.len() {
                    panic!("IndexSizeError: `real` and `imag` length should be equal");
                } else if r.len() < 2 {
                    // i and r have same length
                    panic!("IndexSizeError: `real` and `imag` length should at least 2");
                }

                (r, i)
            }
            (Some(r), None) => {
                if r.len() < 2 {
                    panic!("IndexSizeError: `real` and `imag` length should at least 2");
                }

                let len = r.len();
                (r, vec![0.; len])
            }
            (None, Some(i)) => {
                if i.len() < 2 {
                    panic!("IndexSizeError: `real` and `imag` length should at least 2");
                }

                let len = i.len();
                (vec![0.; len], i)
            }
            // Defaults to sine wave
            // [spec] Note: When setting this PeriodicWave on an OscillatorNode,
            // this is equivalent to using the built-in type "sine".
            _ => (vec![0., 0.], vec![0., 1.]),
        };

        let normalize = !disable_normalization;
        // [spec] A conforming implementation MUST support PeriodicWave up to at least 8192 elements.
        let wavetable = Self::generate_wavetable(&real, &imag, normalize, TABLE_LENGTH_USIZE);

        Self {
            wavetable: Arc::new(wavetable),
        }
    }

    pub(crate) fn as_slice(&self) -> &[f32] {
        &self.wavetable[..]
    }

    // cf. https://webaudio.github.io/web-audio-api/#waveform-generation
    fn generate_wavetable(reals: &[f32], imags: &[f32], normalize: bool, size: usize) -> Vec<f32> {
        let mut wavetable = Vec::with_capacity(size);
        let pi_2 = 2. * PI;

        for i in 0..size {
            let mut sample = 0.;
            let phase = pi_2 * i as f32 / size as f32;

            for j in 1..reals.len() {
                let freq = j as f32;
                let real = reals[j];
                let imag = imags[j];
                let rad = phase * freq;
                let contrib = real * rad.cos() + imag * rad.sin();
                sample += contrib;
            }

            wavetable.push(sample);
        }

        if normalize {
            Self::normalize(&mut wavetable);
        }

        wavetable
    }

    fn normalize(wavetable: &mut [f32]) {
        let mut max = 0.;

        for sample in wavetable.iter() {
            let abs = sample.abs();
            if abs > max {
                max = abs;
            }
        }

        // prevent division by 0. (nothing to normalize anyway...)
        if max > 0. {
            let norm_factor = 1. / max;

            for sample in wavetable.iter_mut() {
                *sample *= norm_factor;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use float_eq::assert_float_eq;
    use std::f32::consts::PI;

    use crate::context::AudioContext;
    use crate::node::{TABLE_LENGTH_F32, TABLE_LENGTH_USIZE};

    use super::{PeriodicWave, PeriodicWaveOptions};

    #[test]
    #[should_panic]
    fn fails_to_build_when_only_real_is_defined_and_too_short() {
        let context = AudioContext::default();

        let options = PeriodicWaveOptions {
            real: Some(vec![0.]),
            imag: None,
            disable_normalization: false,
        };

        let _periodic_wave = PeriodicWave::new(&context, options);
    }

    #[test]
    #[should_panic]
    fn fails_to_build_when_only_imag_is_defined_and_too_short() {
        let context = AudioContext::default();

        let options = PeriodicWaveOptions {
            real: None,
            imag: Some(vec![0.]),
            disable_normalization: false,
        };

        let _periodic_wave = PeriodicWave::new(&context, options);
    }

    #[test]
    #[should_panic]
    fn fails_to_build_when_imag_and_real_not_equal_length() {
        let context = AudioContext::default();

        let options = PeriodicWaveOptions {
            real: Some(vec![0., 0., 0.]),
            imag: Some(vec![0., 0.]),
            disable_normalization: false,
        };

        let _periodic_wave = PeriodicWave::new(&context, options);
    }

    #[test]
    #[should_panic]
    fn fails_to_build_when_imag_and_real_too_shorts() {
        let context = AudioContext::default();

        let options = PeriodicWaveOptions {
            real: Some(vec![0.]),
            imag: Some(vec![0.]),
            disable_normalization: false,
        };

        let _periodic_wave = PeriodicWave::new(&context, options);
    }

    #[test]
    fn wavetable_generate_sine() {
        let reals = [0., 0.];
        let imags = [0., 1.];

        let result = PeriodicWave::generate_wavetable(&reals, &imags, true, TABLE_LENGTH_USIZE);
        let mut expected = Vec::new();

        for i in 0..TABLE_LENGTH_USIZE {
            let sample = (i as f32 / TABLE_LENGTH_F32 * 2. * PI).sin();
            expected.push(sample);
        }

        assert_float_eq!(result[..], expected[..], abs_all <= 1e-6);
    }

    #[test]
    fn wavetable_generate_2f_not_norm() {
        let reals = [0., 0., 0.];
        let imags = [0., 0.5, 0.5];

        let result = PeriodicWave::generate_wavetable(&reals, &imags, false, TABLE_LENGTH_USIZE);
        let mut expected = Vec::new();

        for i in 0..TABLE_LENGTH_USIZE {
            let mut sample = 0.;
            // fundamental frequency
            sample += 0.5 * (1. * i as f32 / TABLE_LENGTH_F32 * 2. * PI).sin();
            // 1rst partial
            sample += 0.5 * (2. * i as f32 / TABLE_LENGTH_F32 * 2. * PI).sin();

            expected.push(sample);
        }

        assert_float_eq!(result[..], expected[..], abs_all <= 1e-6);
    }

    #[test]
    fn normalize() {
        {
            let mut signal = [-0.5, 0.2];
            PeriodicWave::normalize(&mut signal);
            let expected = [-1., 0.4];

            assert_float_eq!(signal[..], expected[..], abs_all <= 0.);
        }

        {
            let mut signal = [0.5, -0.2];
            PeriodicWave::normalize(&mut signal);
            let expected = [1., -0.4];

            assert_float_eq!(signal[..], expected[..], abs_all <= 0.);
        }
    }

    #[test]
    fn wavetable_generate_2f_norm() {
        let reals = [0., 0., 0.];
        let imags = [0., 0.5, 0.5];

        let result = PeriodicWave::generate_wavetable(&reals, &imags, true, TABLE_LENGTH_USIZE);
        let mut expected = Vec::new();

        for i in 0..TABLE_LENGTH_USIZE {
            let mut sample = 0.;
            // fundamental frequency
            sample += 0.5 * (1. * i as f32 / TABLE_LENGTH_F32 * 2. * PI).sin();
            // 1rst partial
            sample += 0.5 * (2. * i as f32 / TABLE_LENGTH_F32 * 2. * PI).sin();

            expected.push(sample);
        }

        PeriodicWave::normalize(&mut expected);

        assert_float_eq!(result[..], expected[..], abs_all <= 1e-6);
    }
}