1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
//! The `BaseAudioContext` interface
use crate::buffer::{AudioBuffer, AudioBufferOptions};
use crate::context::{
AudioContextRegistration, AudioContextState, AudioParamId, ConcreteBaseAudioContext,
DESTINATION_NODE_ID,
};
use crate::decoding::MediaDecoder;
use crate::node::{AudioNode, ChannelConfigOptions};
use crate::param::AudioParamDescriptor;
use crate::periodic_wave::{PeriodicWave, PeriodicWaveOptions};
use crate::render::AudioProcessor;
use crate::{node, AudioListener};
/// The interface representing an audio-processing graph built from audio modules linked together,
/// each represented by an `AudioNode`.
///
/// An audio context controls both the creation of the nodes it contains and the execution of the
/// audio processing, or decoding.
#[allow(clippy::module_name_repetitions)]
pub trait BaseAudioContext {
/// Returns the [`BaseAudioContext`] concrete type associated with this `AudioContext`
fn base(&self) -> &ConcreteBaseAudioContext;
/// Construct a new pair of [`AudioNode`] and [`AudioProcessor`]
///
/// The `AudioNode` lives in the user-facing control thread. The Processor is sent to the render thread.
///
/// Check the `examples/worklet.rs` file for example usage of this method.
fn register<
T: AudioNode,
F: FnOnce(AudioContextRegistration) -> (T, Box<dyn AudioProcessor>),
>(
&self,
f: F,
) -> T {
// This appears to be a recursive call, but the ConcreteBaseAudioContext overrides this
// default implementation
self.base().register(f)
}
/// Decode an [`AudioBuffer`] from a given input stream.
///
/// The current implementation can decode FLAC, Opus, PCM, Vorbis, and Wav.
///
/// In addition to the official spec, the input parameter can be any byte stream (not just an
/// array). This means you can decode audio data from a file, network stream, or in memory
/// buffer, and any other [`std::io::Read`] implementor. The data if buffered internally so you
/// should not wrap the source in a `BufReader`.
///
/// This function operates synchronously, which may be undesirable on the control thread. The
/// example shows how to avoid this. An async version is currently not implemented.
///
/// # Errors
///
/// This method returns an Error in various cases (IO, mime sniffing, decoding).
///
/// # Usage
///
/// ```no_run
/// use std::io::Cursor;
/// use web_audio_api::context::{BaseAudioContext, OfflineAudioContext};
///
/// let input = Cursor::new(vec![0; 32]); // or a File, TcpStream, ...
///
/// let context = OfflineAudioContext::new(2, 44_100, 44_100.);
/// let handle = std::thread::spawn(move || context.decode_audio_data_sync(input));
///
/// // do other things
///
/// // await result from the decoder thread
/// let decode_buffer_result = handle.join();
/// ```
///
/// # Examples
///
/// The following example shows how to use a thread pool for audio buffer decoding:
///
/// `cargo run --release --example decode_multithreaded`
fn decode_audio_data_sync<R: std::io::Read + Send + Sync + 'static>(
&self,
input: R,
) -> Result<AudioBuffer, Box<dyn std::error::Error + Send + Sync>> {
// Set up a media decoder, consume the stream in full and construct a single buffer out of it
let mut buffer = MediaDecoder::try_new(input)?
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.reduce(|mut accum, item| {
accum.extend(&item);
accum
})
// if there are no samples decoded, return an empty buffer
.unwrap_or_else(|| AudioBuffer::from(vec![vec![]], self.sample_rate()));
// resample to desired rate (no-op if already matching)
buffer.resample(self.sample_rate());
Ok(buffer)
}
/// Create an new "in-memory" `AudioBuffer` with the given number of channels,
/// length (i.e. number of samples per channel) and sample rate.
///
/// Note: In most cases you will want the sample rate to match the current
/// audio context sample rate.
#[must_use]
fn create_buffer(
&self,
number_of_channels: usize,
length: usize,
sample_rate: f32,
) -> AudioBuffer {
let options = AudioBufferOptions {
number_of_channels,
length,
sample_rate,
};
AudioBuffer::new(options)
}
/// Creates a `AnalyserNode`
#[must_use]
fn create_analyser(&self) -> node::AnalyserNode {
node::AnalyserNode::new(self.base(), node::AnalyserOptions::default())
}
/// Creates an `BiquadFilterNode` which implements a second order filter
#[must_use]
fn create_biquad_filter(&self) -> node::BiquadFilterNode {
node::BiquadFilterNode::new(self.base(), node::BiquadFilterOptions::default())
}
/// Creates an `AudioBufferSourceNode`
#[must_use]
fn create_buffer_source(&self) -> node::AudioBufferSourceNode {
node::AudioBufferSourceNode::new(self.base(), node::AudioBufferSourceOptions::default())
}
/// Creates an `ConstantSourceNode`, a source representing a constant value
#[must_use]
fn create_constant_source(&self) -> node::ConstantSourceNode {
node::ConstantSourceNode::new(self.base(), node::ConstantSourceOptions::default())
}
/// Creates an `ConvolverNode`, a processing node which applies linear convolution
#[must_use]
fn create_convolver(&self) -> node::ConvolverNode {
node::ConvolverNode::new(self.base(), node::ConvolverOptions::default())
}
/// Creates a `ChannelMergerNode`
#[must_use]
fn create_channel_merger(&self, number_of_inputs: usize) -> node::ChannelMergerNode {
let opts = node::ChannelMergerOptions {
number_of_inputs,
..node::ChannelMergerOptions::default()
};
node::ChannelMergerNode::new(self.base(), opts)
}
/// Creates a `ChannelSplitterNode`
#[must_use]
fn create_channel_splitter(&self, number_of_outputs: usize) -> node::ChannelSplitterNode {
let opts = node::ChannelSplitterOptions {
number_of_outputs,
..node::ChannelSplitterOptions::default()
};
node::ChannelSplitterNode::new(self.base(), opts)
}
/// Creates a `DelayNode`, delaying the audio signal
#[must_use]
fn create_delay(&self, max_delay_time: f64) -> node::DelayNode {
let opts = node::DelayOptions {
max_delay_time,
..node::DelayOptions::default()
};
node::DelayNode::new(self.base(), opts)
}
/// Creates a `DynamicsCompressorNode`, compressing the audio signal
#[must_use]
fn create_dynamics_compressor(&self) -> node::DynamicsCompressorNode {
node::DynamicsCompressorNode::new(self.base(), node::DynamicsCompressorOptions::default())
}
/// Creates an `GainNode`, to control audio volume
#[must_use]
fn create_gain(&self) -> node::GainNode {
node::GainNode::new(self.base(), node::GainOptions::default())
}
/// Creates an `IirFilterNode`
///
/// # Arguments
///
/// * `feedforward` - An array of the feedforward (numerator) coefficients for the transfer function of the IIR filter.
/// The maximum length of this array is 20
/// * `feedback` - An array of the feedback (denominator) coefficients for the transfer function of the IIR filter.
/// The maximum length of this array is 20
#[must_use]
fn create_iir_filter(&self, feedforward: Vec<f64>, feedback: Vec<f64>) -> node::IIRFilterNode {
let options = node::IIRFilterOptions {
channel_config: ChannelConfigOptions::default(),
feedforward,
feedback,
};
node::IIRFilterNode::new(self.base(), options)
}
/// Creates an `OscillatorNode`, a source representing a periodic waveform.
#[must_use]
fn create_oscillator(&self) -> node::OscillatorNode {
node::OscillatorNode::new(self.base(), node::OscillatorOptions::default())
}
/// Creates a `PannerNode`
#[must_use]
fn create_panner(&self) -> node::PannerNode {
node::PannerNode::new(self.base(), node::PannerOptions::default())
}
/// Creates a periodic wave
///
/// Please note that this constructor deviates slightly from the spec by requiring a single
/// argument with the periodic wave options.
#[must_use]
fn create_periodic_wave(&self, options: PeriodicWaveOptions) -> PeriodicWave {
PeriodicWave::new(self.base(), options)
}
/// Creates an `StereoPannerNode` to pan a stereo output
#[must_use]
fn create_stereo_panner(&self) -> node::StereoPannerNode {
node::StereoPannerNode::new(self.base(), node::StereoPannerOptions::default())
}
/// Creates a `WaveShaperNode`
#[must_use]
fn create_wave_shaper(&self) -> node::WaveShaperNode {
node::WaveShaperNode::new(self.base(), node::WaveShaperOptions::default())
}
/// Returns an `AudioDestinationNode` representing the final destination of all audio in the
/// context. It can be thought of as the audio-rendering device.
#[must_use]
fn destination(&self) -> node::AudioDestinationNode {
let registration = AudioContextRegistration {
id: DESTINATION_NODE_ID,
context: self.base().clone(),
};
let channel_config = self.base().destination_channel_config();
node::AudioDestinationNode::from_raw_parts(registration, channel_config)
}
/// Returns the `AudioListener` which is used for 3D spatialization
#[must_use]
fn listener(&self) -> AudioListener {
self.base().listener()
}
/// The sample rate (in sample-frames per second) at which the `AudioContext` handles audio.
#[must_use]
fn sample_rate(&self) -> f32 {
self.base().sample_rate()
}
/// Returns state of current context
#[must_use]
fn state(&self) -> AudioContextState {
self.base().state()
}
/// This is the time in seconds of the sample frame immediately following the last sample-frame
/// in the block of audio most recently processed by the context’s rendering graph.
#[must_use]
fn current_time(&self) -> f64 {
self.base().current_time()
}
/// Create an `AudioParam`.
///
/// Call this inside the `register` closure when setting up your `AudioNode`
#[must_use]
fn create_audio_param(
&self,
opts: AudioParamDescriptor,
dest: &AudioContextRegistration,
) -> (crate::param::AudioParam, AudioParamId) {
let param = self.register(move |registration| {
let (node, proc) = crate::param::audio_param_pair(opts, registration);
(node, Box::new(proc))
});
// Connect the param to the node, once the node is registered inside the audio graph.
self.base().queue_audio_param_connect(¶m, dest.id());
let proc_id = AudioParamId(param.registration().id().0);
(param, proc_id)
}
#[cfg(test)]
fn mock_registration(&self) -> AudioContextRegistration {
AudioContextRegistration {
id: crate::context::AudioNodeId(0),
context: self.base().clone(),
}
}
}