1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
//! Module for the parser implementation.
//!
//! The parser consumes a token stream from a lexer and produces
//! a list of parser events that can be used to construct a CST.
//!
//! The design of this is very much based on `rust-analyzer`.
use std::fmt;
use logos::Logos;
use super::lexer::Lexer;
use super::lexer::LexerResult;
use super::lexer::TokenSet;
use super::tree::SyntaxKind;
use super::Diagnostic;
use super::Span;
/// Represents an event produced by the parser.
///
/// The parser produces a stream of events that can be used to construct
/// a CST.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Event {
/// A new node has started.
NodeStarted {
/// The kind of the node.
kind: SyntaxKind,
/// For left-recursive syntactic constructs, the parser produces
/// a child node before it sees a parent. `forward_parent`
/// saves the position of current event's parent.
forward_parent: Option<usize>,
},
/// A node has finished.
NodeFinished,
/// A token was encountered.
Token {
/// The syntax kind of the token.
kind: SyntaxKind,
/// The source span of the token.
span: Span,
},
}
impl Event {
/// Gets an start node event for an abandoned node.
pub fn abandoned() -> Self {
Self::NodeStarted {
kind: SyntaxKind::Abandoned,
forward_parent: None,
}
}
}
/// Utility type for displaying "expected" items in a parser expectation
/// diagnostic.
struct Expected<'a> {
/// The set of expected items.
items: &'a [&'a str],
}
impl<'a> Expected<'a> {
/// Constructs a new `Expected`.
fn new(items: &'a [&'a str]) -> Self {
Self { items }
}
}
impl fmt::Display for Expected<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let count = self.items.len();
for (i, item) in self.items.iter().enumerate() {
if i > 0 {
if count == 2 {
write!(f, " or ")?;
} else if i == count - 1 {
write!(f, ", or ")?;
} else {
write!(f, ", ")?;
}
}
write!(f, "{item}")?;
}
Ok(())
}
}
/// Creates an "expected, but found" diagnostic error.
pub(crate) fn expected_found(expected: &str, found: Option<&str>, span: Span) -> Diagnostic {
let found = found.unwrap_or("end of input");
Diagnostic::error(format!("expected {expected}, but found {found}"))
.with_label(format!("unexpected {found}"), span)
}
/// Creates an "expected one of, but found" diagnostic error.
pub(crate) fn expected_one_of(expected: &[&str], found: Option<&str>, span: Span) -> Diagnostic {
let found = found.unwrap_or("end of input");
Diagnostic::error(format!(
"expected {expected}, but found {found}",
expected = Expected::new(expected)
))
.with_label(format!("unexpected {found}"), span)
}
/// Creates an "unterminated string" diagnostic error.
pub(crate) fn unterminated_string(span: Span) -> Diagnostic {
Diagnostic::error("an unterminated string was encountered")
.with_label("this quote is not matched", span)
}
/// Creates an "unterminated heredoc" diagnostic error.
pub(crate) fn unterminated_heredoc(opening: &str, span: Span, command: bool) -> Diagnostic {
Diagnostic::error(format!(
"an unterminated {kind} was encountered",
kind = if command {
"heredoc command"
} else {
"multi-line string"
}
))
.with_label(format!("this {opening} is not matched"), span)
}
/// Creates an "unterminated braced command" diagnostic error.
pub(crate) fn unterminated_braced_command(opening: &str, span: Span) -> Diagnostic {
Diagnostic::error("an unterminated braced command was encountered")
.with_label(format!("this {opening} is not matched"), span)
}
/// Creates an "unmatched token" diagnostic error.
pub(crate) fn unmatched(
open: &str,
open_span: Span,
close: &str,
found: &str,
span: Span,
) -> Diagnostic {
Diagnostic::error(format!("expected {close}, but found {found}"))
.with_label(format!("unexpected {found}"), span)
.with_label(format!("this {open} is not matched"), open_span)
}
/// A trait implemented by parser tokens.
pub trait ParserToken<'a>: Eq + Copy + Logos<'a, Source = str, Error = (), Extras = ()> {
/// Converts the token into its syntax representation.
fn into_syntax(self) -> SyntaxKind;
/// Converts the token into its "raw" representation.
fn into_raw(self) -> u8;
/// Converts from a raw token into the parser token.
fn from_raw(token: u8) -> Self;
/// Describes a raw token.
fn describe(token: u8) -> &'static str;
/// Determines if the token is trivia that should be skipped over
/// by the parser.
///
/// Trivia tokens are still added to the concrete syntax tree.
fn is_trivia(self) -> bool;
/// A helper for recovering at an interpolation point.
#[allow(unused_variables)]
fn recover_interpolation(token: Self, start: Span, parser: &mut Parser<'a, Self>) -> bool {
false
}
}
/// Marks the start of a node in the event list.
///
/// # Panics
///
/// Markers must either be completed or abandoned before being dropped;
/// otherwise, a panic will occur.
#[derive(Debug)]
pub struct Marker(usize);
impl Marker {
/// Constructs a new `Marker`.
fn new(pos: usize) -> Marker {
Self(pos)
}
/// Completes the syntax tree node.
pub fn complete<'a, T>(self, parser: &mut Parser<'a, T>, kind: SyntaxKind) -> CompletedMarker
where
T: ParserToken<'a>,
{
// Update the node kind and push a finished event
match &mut parser.events[self.0] {
Event::NodeStarted { kind: existing, .. } => {
*existing = kind;
}
_ => unreachable!(),
}
parser.events.push(Event::NodeFinished);
let m = CompletedMarker::new(self.0, kind);
std::mem::forget(self);
m
}
/// Abandons the node due to an error.
pub fn abandon<'a, T>(self, parser: &mut Parser<'a, T>)
where
T: ParserToken<'a>,
{
// If the current node has no children, just pop it from the event list
if self.0 == parser.events.len() - 1 {
match parser.events.pop() {
Some(Event::NodeStarted {
kind: SyntaxKind::Abandoned,
forward_parent: None,
}) => (),
_ => unreachable!(),
}
}
std::mem::forget(self);
}
}
impl Drop for Marker {
fn drop(&mut self) {
if !std::thread::panicking() {
panic!("marker was dropped without it being completed or abandoned");
}
}
}
/// Represents a marker for a node that has been completed.
#[derive(Debug, Clone, Copy)]
pub struct CompletedMarker {
/// Marks the position in the event list where the node was started.
pos: usize,
/// The kind of the completed node.
kind: SyntaxKind,
}
impl CompletedMarker {
/// Constructs a new completed marker with the given start position and
/// syntax kind.
fn new(pos: usize, kind: SyntaxKind) -> Self {
CompletedMarker { pos, kind }
}
/// Creates a new node that precedes the completed node.
pub fn precede<'a, T>(self, parser: &mut Parser<'a, T>) -> Marker
where
T: ParserToken<'a>,
{
let new_pos = parser.start();
match &mut parser.events[self.pos] {
Event::NodeStarted { forward_parent, .. } => {
*forward_parent = Some(new_pos.0 - self.pos);
}
_ => unreachable!(),
}
new_pos
}
/// Extends the completed marker to the left up to `marker`.
pub fn extend_to<'a, T>(self, parser: &mut Parser<'a, T>, marker: Marker) -> CompletedMarker
where
T: ParserToken<'a>,
{
let pos = marker.0;
std::mem::forget(marker);
match &mut parser.events[pos] {
Event::NodeStarted { forward_parent, .. } => {
*forward_parent = Some(self.pos - pos);
}
_ => unreachable!(),
}
self
}
/// Gets the kind of the completed marker.
pub fn kind(&self) -> SyntaxKind {
self.kind
}
}
/// A utility type used during string interpolation.
///
/// See the [Parser::interpolate] method.
#[allow(missing_debug_implementations)]
pub struct Interpolator<'a, T>
where
T: Logos<'a, Extras = ()>,
{
/// The lexer to use for the interpolation.
lexer: Lexer<'a, T>,
/// The parser events.
events: Vec<Event>,
/// The parser diagnostics.
diagnostics: Vec<Diagnostic>,
/// The buffered events from a peek operation.
buffered: Vec<Event>,
}
impl<'a, T> Interpolator<'a, T>
where
T: Logos<'a, Source = str, Error = (), Extras = ()> + Copy,
{
/// Adds an event to the parser event list.
pub fn event(&mut self, event: Event) {
self.events.push(event);
}
/// Adds a diagnostic to the parser error list.
pub fn diagnostic(&mut self, diagnostic: Diagnostic) {
self.diagnostics.push(diagnostic);
}
/// Starts a new node event.
pub fn start(&mut self) -> Marker {
// Append any buffered trivia before we start this node
if !self.buffered.is_empty() {
self.events.append(&mut self.buffered);
}
let pos = self.events.len();
self.events.push(Event::NodeStarted {
kind: SyntaxKind::Abandoned,
forward_parent: None,
});
Marker::new(pos)
}
/// Consumes the interpolator and returns a parser.
pub fn into_parser<T2>(self) -> Parser<'a, T2>
where
T2: ParserToken<'a>,
T::Extras: Into<T2::Extras>,
{
Parser {
lexer: Some(self.lexer.morph()),
events: self.events,
diagnostics: self.diagnostics,
buffered: Default::default(),
}
}
}
impl<'a, T> Iterator for Interpolator<'a, T>
where
T: Logos<'a, Error = (), Extras = ()> + Copy,
{
type Item = (LexerResult<T>, Span);
fn next(&mut self) -> Option<Self::Item> {
self.lexer.next()
}
}
/// The output of a parse.
#[allow(missing_debug_implementations)]
pub struct Output<'a, T>
where
T: ParserToken<'a>,
{
/// The parser's lexer.
pub lexer: Lexer<'a, T>,
/// The parser events.
pub events: Vec<Event>,
/// The parser diagnostics.
pub diagnostics: Vec<Diagnostic>,
}
/// Represents the result of a `peek2` operation.
///
/// See [Parser::peek2].
#[derive(Debug, Copy, Clone)]
pub struct Peek2<T> {
/// The first peeked token.
pub first: (T, Span),
/// The second peeked token.
pub second: (T, Span),
}
/// Implements a WDL parser.
///
/// The parser produces a list of events that can be used to
/// construct a CST.
#[allow(missing_debug_implementations)]
pub struct Parser<'a, T>
where
T: ParserToken<'a>,
{
/// The lexer that returns a stream of tokens for the parser.
///
/// This may temporarily be `None` during string interpolation.
///
/// See the [interpolate][Self::interpolate] method.
lexer: Option<Lexer<'a, T>>,
/// The events produced by the parser.
events: Vec<Event>,
/// The diagnostics encountered so far.
diagnostics: Vec<Diagnostic>,
/// The buffered events from a peek operation.
buffered: Vec<Event>,
}
impl<'a, T> Parser<'a, T>
where
T: ParserToken<'a>,
{
/// Construct a new parser from the given lexer.
pub fn new(lexer: Lexer<'a, T>) -> Self {
Self {
lexer: Some(lexer),
events: Default::default(),
diagnostics: Default::default(),
buffered: Default::default(),
}
}
/// Creates a new parser at the same location in the source as the given
/// parser.
///
/// The new parser will have an empty event and diagnostic lists.
pub fn new_at(other: &Self) -> Self {
Self::new(other.lexer.as_ref().expect("should have lexer").clone())
}
/// Gets the current span of the parser.
pub fn span(&self) -> Span {
self.lexer.as_ref().expect("expected a lexer").span()
}
/// Gets the source being parsed at the given span.
pub fn source(&self, span: Span) -> &'a str {
self.lexer.as_ref().expect("expected a lexer").source(span)
}
/// Peeks at the next token (i.e. lookahead 1) from the lexer without
/// consuming it.
///
/// The token is not added to the event list.
///
/// # Note
///
/// Note that peeking may cause parser events to be buffered.
///
/// If `peek` returns `None`, ensure all buffered events are added to the
/// event list by calling `next` on the parser; otherwise, calling `finish`
/// may panic.
pub fn peek(&mut self) -> Option<(T, Span)> {
while let Some((res, span)) = self.lexer.as_mut()?.peek() {
if let Some(t) = self.consume_trivia(res, span, true) {
return Some(t);
}
}
None
}
/// Peeks at the next and next-next tokens (i.e. lookahead 2) from the lexer
/// without consuming either token.
///
/// The returned tokens are not added to the event list.
pub fn peek2(&mut self) -> Option<Peek2<T>> {
let first = self.peek()?;
// We have to clone the lexer here since it only supports a single lookahead.
// The clone is cheap, but it does mean we'll re-tokenize this second lookahead
// eventually.
let mut lexer = self
.lexer
.as_ref()
.expect("there should be a lexer")
.clone();
lexer
.next()
.unwrap()
.0
.expect("should have peeked at a valid token");
while let Some((Ok(token), span)) = lexer.next() {
if token.is_trivia() {
// Ignore trivia
continue;
}
return Some(Peek2 {
first,
second: (token, span),
});
}
None
}
/// Consumes the next token only if it matches the given token.
///
/// Returns `true` if the token was consumed, `false` if otherwise.
pub fn next_if(&mut self, token: T) -> bool {
match self.peek() {
Some((t, _)) if t == token => {
self.next();
true
}
_ => false,
}
}
/// Parses a delimited list of nodes via a callback.
///
/// The parsing stops when it encounters the `until` token.
pub fn delimited<F>(
&mut self,
delimiter: Option<T>,
until: TokenSet,
recovery: TokenSet,
mut cb: F,
) where
F: FnMut(&mut Self, Marker) -> Result<(), (Marker, Diagnostic)>,
{
let recovery = if let Some(delimiter) = delimiter {
recovery
.union(until)
.union(TokenSet::new(&[delimiter.into_raw()]))
} else {
recovery.union(until)
};
let mut next: Option<(T, Span)> = self.peek();
while let Some((token, _)) = next {
if until.contains(token.into_raw()) {
break;
}
let marker = self.start();
if let Err((marker, e)) = cb(self, marker) {
self.recover(e, recovery);
marker.abandon(self);
}
next = self.peek();
if let Some(delimiter) = delimiter {
if let Some((token, _)) = next {
if until.contains(token.into_raw()) {
break;
}
if let Err(e) = self.expect(delimiter) {
// Attach a label to the diagnostic hinting at where we expected the
// delimiter to be; to do this, look back at the last non-trivia token event
// in the parser events and use its span for the label.
let e = if let Some(span) = self.events.iter().rev().find_map(|e| match e {
Event::Token { kind, span }
if *kind != SyntaxKind::Whitespace
&& *kind != SyntaxKind::Comment =>
{
Some(*span)
}
_ => None,
}) {
e.with_label(
format!(
"consider adding a {desc} after this",
desc = T::describe(delimiter.into_raw())
),
Span::new(span.end() - 1, 1),
)
} else {
e
};
self.recover(e, recovery);
self.next_if(delimiter);
}
next = self.peek();
}
}
}
}
/// Adds a diagnostic to the parser output.
pub fn diagnostic(&mut self, diagnostic: Diagnostic) {
self.diagnostics.push(diagnostic);
}
/// Recovers from an error by consuming all tokens not
/// in the given token set.
pub fn recover(&mut self, mut diagnostic: Diagnostic, tokens: TokenSet) {
while let Some((token, span)) = self.peek() {
if tokens.contains(token.into_raw()) {
break;
}
self.next().unwrap();
// If the token starts an interpolation, then we need
// to move past the entire set of tokens that are part
// of the interpolation
if T::recover_interpolation(token, span, self) {
// If the diagnostic label started at this token, we need to extend its length
// to cover the interpolation
for label in diagnostic.labels_mut() {
let label_span = label.span();
if label_span.start() != span.start() {
continue;
}
// The label should include everything up to the current start
label.set_span(Span::new(
label_span.start(),
self.lexer
.as_ref()
.expect("should have a lexer")
.span()
.end()
- label_span.end()
+ 1,
));
}
}
}
self.diagnostics.push(diagnostic);
}
/// Starts a new node event.
pub fn start(&mut self) -> Marker {
// Peek before starting the node so that any trivia appears as siblings to this
// node
if !self.events.is_empty() {
self.peek();
// Append any buffered trivia before we start this node
if !self.buffered.is_empty() {
self.events.append(&mut self.buffered);
}
}
let pos = self.events.len();
self.events.push(Event::NodeStarted {
kind: SyntaxKind::Abandoned,
forward_parent: None,
});
Marker::new(pos)
}
/// Requires that the current token is the given token.
///
/// Panics if the token is not the given token.
pub fn require(&mut self, token: T) -> Span {
match self.next() {
Some((t, span)) if t == token => span,
_ => panic!(
"lexer not at required token {token}",
token = T::describe(token.into_raw())
),
}
}
/// Requires that the current token is in the given token set.
///
/// # Panics
///
/// Panics if the token is not in the token set.
pub fn require_in(&mut self, tokens: TokenSet) {
match self.next() {
Some((t, _)) if tokens.contains(t.into_raw()) => {}
found => {
let found = found.map(|(t, _)| T::describe(t.into_raw()));
panic!(
"unexpected token {found}",
found = found.unwrap_or("end of input")
);
}
}
}
/// Expects the next token to be the given token.
///
/// Returns an error if the token is not the given token.
pub fn expect(&mut self, token: T) -> Result<Span, Diagnostic> {
match self.peek() {
Some((t, span)) if t == token => {
self.next();
Ok(span)
}
found => {
let (found, span) = found
.map(|(t, s)| (Some(T::describe(t.into_raw())), s))
.unwrap_or_else(|| (None, self.span()));
Err(expected_found(T::describe(token.into_raw()), found, span))
}
}
}
/// Expects the next token to be the given token, but uses
/// the provided name in the error.
///
/// Returns an error if the token is not the given token.
pub fn expect_with_name(&mut self, token: T, name: &'static str) -> Result<Span, Diagnostic> {
match self.peek() {
Some((t, span)) if t == token => {
self.next();
Ok(span)
}
found => {
let (found, span) = found
.map(|(t, s)| (Some(T::describe(t.into_raw())), s))
.unwrap_or_else(|| (None, self.span()));
Err(expected_found(name, found, span))
}
}
}
/// Expects the next token to be in the given token set.
///
/// Returns an error if the token is not the given set.
pub fn expect_in(
&mut self,
tokens: TokenSet,
expected: &[&str],
) -> Result<(T, Span), Diagnostic> {
match self.peek() {
Some((t, span)) if tokens.contains(t.into_raw()) => {
self.next();
Ok((t, span))
}
found => {
let (found, span) = found
.map(|(t, s)| (Some(T::describe(t.into_raw())), s))
.unwrap_or_else(|| (None, self.span()));
Err(expected_one_of(expected, found, span))
}
}
}
/// Used to interpolate strings with a different string interpolation token.
///
/// The provided callback receives a [Interpolator].
///
/// The callback should use [Interpolator::into_parser] for the return
/// value.
pub fn interpolate<T2, F, R>(&mut self, cb: F) -> R
where
T2: Logos<'a, Source = str, Error = (), Extras = ()> + Copy,
F: FnOnce(Interpolator<'a, T2>) -> (Parser<'a, T>, R),
{
let input = Interpolator {
lexer: std::mem::take(&mut self.lexer)
.expect("lexer should exist")
.morph(),
events: std::mem::take(&mut self.events),
diagnostics: std::mem::take(&mut self.diagnostics),
buffered: std::mem::take(&mut self.buffered),
};
let (p, result) = cb(input);
*self = p;
result
}
/// Morph this parser into a parser for a new token type.
///
/// The returned parser continues to point at the same span
/// as the current parser.
pub fn morph<T2>(self) -> Parser<'a, T2>
where
T2: ParserToken<'a>,
T::Extras: Into<T2::Extras>,
{
Parser {
lexer: self.lexer.map(|l| l.morph()),
events: self.events,
diagnostics: self.diagnostics,
buffered: self.buffered,
}
}
/// Consumes the parser and returns an interpolator.
pub fn into_interpolator<T2>(self) -> Interpolator<'a, T2>
where
T2: Logos<'a, Source = str, Error = (), Extras = ()> + Copy,
{
Interpolator {
lexer: self.lexer.expect("lexer should be present").morph(),
events: self.events,
diagnostics: self.diagnostics,
buffered: self.buffered,
}
}
/// Consumes the parser and returns the output.
///
/// # Panics
///
/// This method panics if buffered events remain in the parser.
///
/// To ensure that no buffered events remain, call `next()` on the parser
/// and verify it returns `None` before calling this method.
pub fn finish(self) -> Output<'a, T> {
assert!(
self.buffered.is_empty(),
"buffered events remain; ensure `next` was called after an unsuccessful peek"
);
Output {
lexer: self.lexer.expect("lexer should be present"),
events: self.events,
diagnostics: self.diagnostics,
}
}
/// Updates the syntax kind of the last token event.
///
/// # Panics
///
/// Panics if the last event was not a token.
pub fn update_last_token_kind(&mut self, new_kind: SyntaxKind) {
let last = self.events.last_mut().expect("expected a last event");
match last {
Event::Token { kind, .. } => *kind = new_kind,
_ => panic!("the last event is not a token"),
}
}
/// Consumes the remainder of the unparsed source into a special
/// "unparsed" token.
///
/// This occurs when a source file is missing a version statement or
/// if the version specified is unsupported.
pub fn consume_remainder(&mut self) {
if !self.buffered.is_empty() {
self.events.append(&mut self.buffered);
}
if let Some(span) = self
.lexer
.as_mut()
.expect("there should be a lexer")
.consume_remainder()
{
self.events.push(Event::Token {
kind: SyntaxKind::Unparsed,
span,
});
}
}
/// Consumes any trivia tokens by adding them to the event list.
fn consume_trivia(
&mut self,
res: LexerResult<T>,
span: Span,
peeked: bool,
) -> Option<(T, Span)> {
// If not peeked and there are buffered events, append them now
if !peeked && !self.buffered.is_empty() {
self.events.append(&mut self.buffered);
}
let event = match res {
Ok(token) => {
if !token.is_trivia() {
return Some((token, span));
}
Event::Token {
kind: token.into_syntax(),
span,
}
}
Err(_) => {
self.diagnostic(
Diagnostic::error("an unknown token was encountered")
.with_label(Self::unsupported_token_text(self.source(span)), span),
);
Event::Token {
kind: SyntaxKind::Unknown,
span,
}
}
};
if peeked {
self.lexer.as_mut().expect("should have a lexer").next();
self.buffered.push(event);
} else {
self.events.push(event);
}
None
}
/// A helper for unsupported token error span text.
fn unsupported_token_text(token: &str) -> &'static str {
match token {
"&" => "did you mean to use `&&` here?",
"|" => "did you mean to use `||` here?",
_ => "this is not a supported WDL token",
}
}
}
impl<'a, T> Iterator for Parser<'a, T>
where
T: ParserToken<'a>,
{
type Item = (T, Span);
fn next(&mut self) -> Option<(T, Span)> {
while let Some((res, span)) = self.lexer.as_mut()?.next() {
if let Some((token, span)) = self.consume_trivia(res, span, false) {
self.events.push(Event::Token {
kind: token.into_syntax(),
span,
});
return Some((token, span));
}
}
if !self.buffered.is_empty() {
self.events.append(&mut self.buffered);
}
None
}
}