1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* Copyright 2018 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use crate::limits::{MAX_WASM_FUNCTION_PARAMS, MAX_WASM_FUNCTION_RETURNS};
use crate::{BinaryReader, FromReader, Result, SectionLimited};
use std::fmt::Debug;
/// Represents the types of values in a WebAssembly module.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum ValType {
/// The value type is i32.
I32,
/// The value type is i64.
I64,
/// The value type is f32.
F32,
/// The value type is f64.
F64,
/// The value type is v128.
V128,
/// The value type is a reference.
Ref(RefType),
}
// The size of `ValType` is performance sensitive.
const _: () = {
assert!(std::mem::size_of::<ValType>() == 4);
};
impl From<RefType> for ValType {
fn from(ty: RefType) -> ValType {
ValType::Ref(ty)
}
}
impl ValType {
/// Alias for the wasm `funcref` type.
pub const FUNCREF: ValType = ValType::Ref(RefType::FUNCREF);
/// Alias for the wasm `externref` type.
pub const EXTERNREF: ValType = ValType::Ref(RefType::EXTERNREF);
/// Returns whether this value type is a "reference type".
///
/// Only reference types are allowed in tables, for example, and with some
/// instructions. Current reference types include `funcref` and `externref`.
pub fn is_reference_type(&self) -> bool {
matches!(self, ValType::Ref(_))
}
/// Whether the type is defaultable, i.e. it is not a non-nullable reference
/// type.
pub fn is_defaultable(&self) -> bool {
match *self {
Self::I32 | Self::I64 | Self::F32 | Self::F64 | Self::V128 => true,
Self::Ref(rt) => rt.is_nullable(),
}
}
pub(crate) fn is_valtype_byte(byte: u8) -> bool {
match byte {
0x7F | 0x7E | 0x7D | 0x7C | 0x7B | 0x70 | 0x6F | 0x6B | 0x6C => true,
_ => false,
}
}
}
impl<'a> FromReader<'a> for ValType {
fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
match reader.peek()? {
0x7F => {
reader.position += 1;
Ok(ValType::I32)
}
0x7E => {
reader.position += 1;
Ok(ValType::I64)
}
0x7D => {
reader.position += 1;
Ok(ValType::F32)
}
0x7C => {
reader.position += 1;
Ok(ValType::F64)
}
0x7B => {
reader.position += 1;
Ok(ValType::V128)
}
0x70 | 0x6F | 0x6B | 0x6C => Ok(ValType::Ref(reader.read()?)),
_ => bail!(reader.original_position(), "invalid value type"),
}
}
}
/// A reference type.
///
/// The reference types proposal first introduced `externref` and `funcref`.
///
/// The function refererences proposal introduced typed function references.
//
// This is a bitpacked enum that fits in a "u24" aka `[u8; 3]`. It has a two bit
// discriminant distinguishing the following variants:
//
// `(ref null? <type_index>)`: [ 00:i2 nullable:i1 type_index:i21 ]
// `(ref null? func)`: [ 01:i2 nullable:i1 ]
// `(ref null? extern)`: [ 10:i2 nullable:i1 ]
// unused: [ 11:i2 ]
//
// Note that we only technically need 20 bits for the type index to fit every
// type index less than or equal to `crate::limits::MAX_WASM_TYPES`. So if we
// ever need them, we have 2 bits available in that first variant.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct RefType([u8; 3]);
impl std::fmt::Debug for RefType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match (self.is_nullable(), self.heap_type()) {
(true, HeapType::Extern) => write!(f, "externref"),
(false, HeapType::Extern) => write!(f, "(ref extern)"),
(true, HeapType::Func) => write!(f, "funcref"),
(false, HeapType::Func) => write!(f, "(ref func)"),
(true, HeapType::TypedFunc(idx)) => write!(f, "(ref null {idx})"),
(false, HeapType::TypedFunc(idx)) => write!(f, "(ref {idx})"),
}
}
}
// Static assert that we can fit indices up to `MAX_WASM_TYPES` inside `RefType`.
const _: () = {
const fn can_roundtrip_index(index: u32) -> bool {
assert!(RefType::can_represent_type_index(index));
let rt = match RefType::typed_func(true, index) {
Some(rt) => rt,
None => panic!(),
};
assert!(rt.is_nullable());
let actual_index = match rt.type_index() {
Some(i) => i,
None => panic!(),
};
actual_index == index
}
assert!(can_roundtrip_index(crate::limits::MAX_WASM_TYPES as u32));
assert!(can_roundtrip_index(0b00000000_00011111_00000000_00000000));
assert!(can_roundtrip_index(0b00000000_00000000_11111111_00000000));
assert!(can_roundtrip_index(0b00000000_00000000_00000000_11111111));
assert!(can_roundtrip_index(0));
};
impl RefType {
const DISCRIMINANT_MASK: u32 = 0b11 << 22;
const TYPED_FUNC_DISCRIMINANT: u32 = 0b00 << 22;
const ANY_FUNC_DISCRIMINANT: u32 = 0b01 << 22;
const EXTERN_DISCRIMINANT: u32 = 0b10 << 22;
const NULLABLE_MASK: u32 = 1 << 21;
const INDEX_MASK: u32 = (1 << 21) - 1;
/// An nullable untyped function reference aka `(ref null func)` aka
/// `funcref` aka `anyfunc`.
pub const FUNCREF: Self = RefType::from_u32(Self::ANY_FUNC_DISCRIMINANT | Self::NULLABLE_MASK);
/// A nullable reference to an extern object aka `(ref null extern)` aka
/// `externref`.
pub const EXTERNREF: Self = RefType::from_u32(Self::EXTERN_DISCRIMINANT | Self::NULLABLE_MASK);
const fn can_represent_type_index(index: u32) -> bool {
index & Self::INDEX_MASK == index
}
const fn u24_to_u32(bytes: [u8; 3]) -> u32 {
let expanded_bytes = [bytes[0], bytes[1], bytes[2], 0];
u32::from_le_bytes(expanded_bytes)
}
const fn u32_to_u24(x: u32) -> [u8; 3] {
let bytes = x.to_le_bytes();
debug_assert!(bytes[3] == 0);
[bytes[0], bytes[1], bytes[2]]
}
#[inline]
const fn as_u32(&self) -> u32 {
Self::u24_to_u32(self.0)
}
#[inline]
const fn from_u32(x: u32) -> Self {
debug_assert!(x & (0b11111111 << 24) == 0);
debug_assert!(matches!(
x & Self::DISCRIMINANT_MASK,
Self::ANY_FUNC_DISCRIMINANT | Self::TYPED_FUNC_DISCRIMINANT | Self::EXTERN_DISCRIMINANT
));
RefType(Self::u32_to_u24(x))
}
/// Create a reference to a typed function with the type at the given index.
///
/// Returns `None` when the type index is beyond this crate's implementation
/// limits and therfore is not representable.
pub const fn typed_func(nullable: bool, index: u32) -> Option<Self> {
if Self::can_represent_type_index(index) {
let nullable = if nullable { Self::NULLABLE_MASK } else { 0 };
Some(RefType::from_u32(
Self::TYPED_FUNC_DISCRIMINANT | nullable | index,
))
} else {
None
}
}
/// Create a new `RefType`.
///
/// Returns `None` when the heap type's type index (if any) is beyond this
/// crate's implementation limits and therfore is not representable.
pub fn new(nullable: bool, heap_type: HeapType) -> Option<Self> {
let nullable32 = if nullable { Self::NULLABLE_MASK } else { 0 };
match heap_type {
HeapType::TypedFunc(index) => RefType::typed_func(nullable, index),
HeapType::Func => Some(Self::from_u32(Self::ANY_FUNC_DISCRIMINANT | nullable32)),
HeapType::Extern => Some(Self::from_u32(Self::EXTERN_DISCRIMINANT | nullable32)),
}
}
const fn discriminant(&self) -> u32 {
self.as_u32() & Self::DISCRIMINANT_MASK
}
/// Is this a reference to a typed function?
pub const fn is_typed_func_ref(&self) -> bool {
self.discriminant() == Self::TYPED_FUNC_DISCRIMINANT
}
/// If this is a reference to a typed function, get its type index.
pub const fn type_index(&self) -> Option<u32> {
if self.is_typed_func_ref() {
Some(self.as_u32() & Self::INDEX_MASK)
} else {
None
}
}
/// Is this an untyped function reference aka `(ref null func)` aka `funcref` aka `anyfunc`?
pub fn is_func_ref(&self) -> bool {
self.discriminant() == Self::ANY_FUNC_DISCRIMINANT
}
/// Is this a `(ref null extern)` aka `externref`?
pub fn is_extern_ref(&self) -> bool {
self.discriminant() == Self::EXTERN_DISCRIMINANT
}
/// Is this ref type nullable?
pub const fn is_nullable(&self) -> bool {
self.as_u32() & Self::NULLABLE_MASK != 0
}
/// Get the non-nullable version of this ref type.
pub fn as_non_null(&self) -> Self {
Self::from_u32(self.as_u32() & !Self::NULLABLE_MASK)
}
/// Get the heap type that this is a reference to.
pub fn heap_type(&self) -> HeapType {
match self.discriminant() {
Self::TYPED_FUNC_DISCRIMINANT => HeapType::TypedFunc(self.type_index().unwrap()),
Self::ANY_FUNC_DISCRIMINANT => HeapType::Func,
Self::EXTERN_DISCRIMINANT => HeapType::Extern,
_ => unreachable!(),
}
}
}
impl<'a> FromReader<'a> for RefType {
fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
match reader.read()? {
0x70 => Ok(RefType::FUNCREF),
0x6F => Ok(RefType::EXTERNREF),
byte @ (0x6B | 0x6C) => {
let nullable = byte == 0x6C;
let pos = reader.original_position();
RefType::new(nullable, reader.read()?)
.ok_or_else(|| crate::BinaryReaderError::new("type index too large", pos))
}
_ => bail!(reader.original_position(), "malformed reference type"),
}
}
}
/// A heap type from function references. When the proposal is disabled, Index
/// is an invalid type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum HeapType {
/// Function of the type at the given index.
TypedFunc(u32),
/// Untyped (any) function.
Func,
/// External heap type.
Extern,
}
impl<'a> FromReader<'a> for HeapType {
fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
match reader.peek()? {
0x70 => {
reader.position += 1;
Ok(HeapType::Func)
}
0x6F => {
reader.position += 1;
Ok(HeapType::Extern)
}
_ => {
let idx = match u32::try_from(reader.read_var_s33()?) {
Ok(idx) => idx,
Err(_) => {
bail!(reader.original_position(), "invalid function heap type",);
}
};
Ok(HeapType::TypedFunc(idx))
}
}
}
}
/// Represents a type in a WebAssembly module.
#[derive(Debug, Clone)]
pub enum Type {
/// The type is for a function.
Func(FuncType),
}
/// Represents a type of a function in a WebAssembly module.
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct FuncType {
/// The combined parameters and result types.
params_results: Box<[ValType]>,
/// The number of parameter types.
len_params: usize,
}
impl Debug for FuncType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("FuncType")
.field("params", &self.params())
.field("returns", &self.results())
.finish()
}
}
impl FuncType {
/// Creates a new [`FuncType`] from the given `params` and `results`.
pub fn new<P, R>(params: P, results: R) -> Self
where
P: IntoIterator<Item = ValType>,
R: IntoIterator<Item = ValType>,
{
let mut buffer = params.into_iter().collect::<Vec<_>>();
let len_params = buffer.len();
buffer.extend(results);
Self {
params_results: buffer.into(),
len_params,
}
}
/// Creates a new [`FuncType`] fom its raw parts.
///
/// # Panics
///
/// If `len_params` is greater than the length of `params_results` combined.
pub(crate) fn from_raw_parts(params_results: Box<[ValType]>, len_params: usize) -> Self {
assert!(len_params <= params_results.len());
Self {
params_results,
len_params,
}
}
/// Returns a shared slice to the parameter types of the [`FuncType`].
#[inline]
pub fn params(&self) -> &[ValType] {
&self.params_results[..self.len_params]
}
/// Returns a shared slice to the result types of the [`FuncType`].
#[inline]
pub fn results(&self) -> &[ValType] {
&self.params_results[self.len_params..]
}
}
/// Represents a table's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TableType {
/// The table's element type.
pub element_type: RefType,
/// Initial size of this table, in elements.
pub initial: u32,
/// Optional maximum size of the table, in elements.
pub maximum: Option<u32>,
}
/// Represents a memory's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct MemoryType {
/// Whether or not this is a 64-bit memory, using i64 as an index. If this
/// is false it's a 32-bit memory using i32 as an index.
///
/// This is part of the memory64 proposal in WebAssembly.
pub memory64: bool,
/// Whether or not this is a "shared" memory, indicating that it should be
/// send-able across threads and the `maximum` field is always present for
/// valid types.
///
/// This is part of the threads proposal in WebAssembly.
pub shared: bool,
/// Initial size of this memory, in wasm pages.
///
/// For 32-bit memories (when `memory64` is `false`) this is guaranteed to
/// be at most `u32::MAX` for valid types.
pub initial: u64,
/// Optional maximum size of this memory, in wasm pages.
///
/// For 32-bit memories (when `memory64` is `false`) this is guaranteed to
/// be at most `u32::MAX` for valid types. This field is always present for
/// valid wasm memories when `shared` is `true`.
pub maximum: Option<u64>,
}
impl MemoryType {
/// Gets the index type for the memory.
pub fn index_type(&self) -> ValType {
if self.memory64 {
ValType::I64
} else {
ValType::I32
}
}
}
/// Represents a global's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct GlobalType {
/// The global's type.
pub content_type: ValType,
/// Whether or not the global is mutable.
pub mutable: bool,
}
/// Represents a tag kind.
#[derive(Clone, Copy, Debug)]
pub enum TagKind {
/// The tag is an exception type.
Exception,
}
/// A tag's type.
#[derive(Clone, Copy, Debug)]
pub struct TagType {
/// The kind of tag
pub kind: TagKind,
/// The function type this tag uses.
pub func_type_idx: u32,
}
/// A reader for the type section of a WebAssembly module.
pub type TypeSectionReader<'a> = SectionLimited<'a, Type>;
impl<'a> FromReader<'a> for Type {
fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
Ok(match reader.read_u8()? {
0x60 => Type::Func(reader.read()?),
x => return reader.invalid_leading_byte(x, "type"),
})
}
}
impl<'a> FromReader<'a> for FuncType {
fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
let mut params_results = reader
.read_iter(MAX_WASM_FUNCTION_PARAMS, "function params")?
.collect::<Result<Vec<_>>>()?;
let len_params = params_results.len();
let results = reader.read_iter(MAX_WASM_FUNCTION_RETURNS, "function returns")?;
params_results.reserve(results.size_hint().0);
for result in results {
params_results.push(result?);
}
Ok(FuncType::from_raw_parts(params_results.into(), len_params))
}
}