1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/* Copyright 2018 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

use crate::limits::{MAX_WASM_FUNCTION_PARAMS, MAX_WASM_FUNCTION_RETURNS};
use crate::{BinaryReader, FromReader, Result, SectionLimited};
use std::fmt::Debug;

/// Represents the types of values in a WebAssembly module.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum ValType {
    /// The value type is i32.
    I32,
    /// The value type is i64.
    I64,
    /// The value type is f32.
    F32,
    /// The value type is f64.
    F64,
    /// The value type is v128.
    V128,
    /// The value type is a reference.
    Ref(RefType),
}

// The size of `ValType` is performance sensitive.
const _: () = {
    assert!(std::mem::size_of::<ValType>() == 4);
};

impl From<RefType> for ValType {
    fn from(ty: RefType) -> ValType {
        ValType::Ref(ty)
    }
}

impl ValType {
    /// Alias for the wasm `funcref` type.
    pub const FUNCREF: ValType = ValType::Ref(RefType::FUNCREF);

    /// Alias for the wasm `externref` type.
    pub const EXTERNREF: ValType = ValType::Ref(RefType::EXTERNREF);

    /// Returns whether this value type is a "reference type".
    ///
    /// Only reference types are allowed in tables, for example, and with some
    /// instructions. Current reference types include `funcref` and `externref`.
    pub fn is_reference_type(&self) -> bool {
        matches!(self, ValType::Ref(_))
    }

    /// Whether the type is defaultable, i.e. it is not a non-nullable reference
    /// type.
    pub fn is_defaultable(&self) -> bool {
        match *self {
            Self::I32 | Self::I64 | Self::F32 | Self::F64 | Self::V128 => true,
            Self::Ref(rt) => rt.is_nullable(),
        }
    }

    pub(crate) fn is_valtype_byte(byte: u8) -> bool {
        match byte {
            0x7F | 0x7E | 0x7D | 0x7C | 0x7B | 0x70 | 0x6F | 0x6B | 0x6C => true,
            _ => false,
        }
    }
}

impl<'a> FromReader<'a> for ValType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.peek()? {
            0x7F => {
                reader.position += 1;
                Ok(ValType::I32)
            }
            0x7E => {
                reader.position += 1;
                Ok(ValType::I64)
            }
            0x7D => {
                reader.position += 1;
                Ok(ValType::F32)
            }
            0x7C => {
                reader.position += 1;
                Ok(ValType::F64)
            }
            0x7B => {
                reader.position += 1;
                Ok(ValType::V128)
            }
            0x70 | 0x6F | 0x6B | 0x6C => Ok(ValType::Ref(reader.read()?)),
            _ => bail!(reader.original_position(), "invalid value type"),
        }
    }
}

/// A reference type.
///
/// The reference types proposal first introduced `externref` and `funcref`.
///
/// The function refererences proposal introduced typed function references.
//
// This is a bitpacked enum that fits in a "u24" aka `[u8; 3]`. It has a two bit
// discriminant distinguishing the following variants:
//
// `(ref null? <type_index>)`: [ 00:i2 nullable:i1 type_index:i21 ]
//         `(ref null? func)`: [ 01:i2 nullable:i1                ]
//       `(ref null? extern)`: [ 10:i2 nullable:i1                ]
//                     unused: [ 11:i2                            ]
//
// Note that we only technically need 20 bits for the type index to fit every
// type index less than or equal to `crate::limits::MAX_WASM_TYPES`. So if we
// ever need them, we have 2 bits available in that first variant.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct RefType([u8; 3]);

impl std::fmt::Debug for RefType {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match (self.is_nullable(), self.heap_type()) {
            (true, HeapType::Extern) => write!(f, "externref"),
            (false, HeapType::Extern) => write!(f, "(ref extern)"),
            (true, HeapType::Func) => write!(f, "funcref"),
            (false, HeapType::Func) => write!(f, "(ref func)"),
            (true, HeapType::TypedFunc(idx)) => write!(f, "(ref null {idx})"),
            (false, HeapType::TypedFunc(idx)) => write!(f, "(ref {idx})"),
        }
    }
}

// Static assert that we can fit indices up to `MAX_WASM_TYPES` inside `RefType`.
const _: () = {
    const fn can_roundtrip_index(index: u32) -> bool {
        assert!(RefType::can_represent_type_index(index));
        let rt = match RefType::typed_func(true, index) {
            Some(rt) => rt,
            None => panic!(),
        };
        assert!(rt.is_nullable());
        let actual_index = match rt.type_index() {
            Some(i) => i,
            None => panic!(),
        };
        actual_index == index
    }

    assert!(can_roundtrip_index(crate::limits::MAX_WASM_TYPES as u32));
    assert!(can_roundtrip_index(0b00000000_00011111_00000000_00000000));
    assert!(can_roundtrip_index(0b00000000_00000000_11111111_00000000));
    assert!(can_roundtrip_index(0b00000000_00000000_00000000_11111111));
    assert!(can_roundtrip_index(0));
};

impl RefType {
    const DISCRIMINANT_MASK: u32 = 0b11 << 22;

    const TYPED_FUNC_DISCRIMINANT: u32 = 0b00 << 22;
    const ANY_FUNC_DISCRIMINANT: u32 = 0b01 << 22;
    const EXTERN_DISCRIMINANT: u32 = 0b10 << 22;

    const NULLABLE_MASK: u32 = 1 << 21;
    const INDEX_MASK: u32 = (1 << 21) - 1;

    /// An nullable untyped function reference aka `(ref null func)` aka
    /// `funcref` aka `anyfunc`.
    pub const FUNCREF: Self = RefType::from_u32(Self::ANY_FUNC_DISCRIMINANT | Self::NULLABLE_MASK);

    /// A nullable reference to an extern object aka `(ref null extern)` aka
    /// `externref`.
    pub const EXTERNREF: Self = RefType::from_u32(Self::EXTERN_DISCRIMINANT | Self::NULLABLE_MASK);

    const fn can_represent_type_index(index: u32) -> bool {
        index & Self::INDEX_MASK == index
    }

    const fn u24_to_u32(bytes: [u8; 3]) -> u32 {
        let expanded_bytes = [bytes[0], bytes[1], bytes[2], 0];
        u32::from_le_bytes(expanded_bytes)
    }

    const fn u32_to_u24(x: u32) -> [u8; 3] {
        let bytes = x.to_le_bytes();
        debug_assert!(bytes[3] == 0);
        [bytes[0], bytes[1], bytes[2]]
    }

    #[inline]
    const fn as_u32(&self) -> u32 {
        Self::u24_to_u32(self.0)
    }

    #[inline]
    const fn from_u32(x: u32) -> Self {
        debug_assert!(x & (0b11111111 << 24) == 0);
        debug_assert!(matches!(
            x & Self::DISCRIMINANT_MASK,
            Self::ANY_FUNC_DISCRIMINANT | Self::TYPED_FUNC_DISCRIMINANT | Self::EXTERN_DISCRIMINANT
        ));
        RefType(Self::u32_to_u24(x))
    }

    /// Create a reference to a typed function with the type at the given index.
    ///
    /// Returns `None` when the type index is beyond this crate's implementation
    /// limits and therfore is not representable.
    pub const fn typed_func(nullable: bool, index: u32) -> Option<Self> {
        if Self::can_represent_type_index(index) {
            let nullable = if nullable { Self::NULLABLE_MASK } else { 0 };
            Some(RefType::from_u32(
                Self::TYPED_FUNC_DISCRIMINANT | nullable | index,
            ))
        } else {
            None
        }
    }

    /// Create a new `RefType`.
    ///
    /// Returns `None` when the heap type's type index (if any) is beyond this
    /// crate's implementation limits and therfore is not representable.
    pub fn new(nullable: bool, heap_type: HeapType) -> Option<Self> {
        let nullable32 = if nullable { Self::NULLABLE_MASK } else { 0 };
        match heap_type {
            HeapType::TypedFunc(index) => RefType::typed_func(nullable, index),
            HeapType::Func => Some(Self::from_u32(Self::ANY_FUNC_DISCRIMINANT | nullable32)),
            HeapType::Extern => Some(Self::from_u32(Self::EXTERN_DISCRIMINANT | nullable32)),
        }
    }

    const fn discriminant(&self) -> u32 {
        self.as_u32() & Self::DISCRIMINANT_MASK
    }

    /// Is this a reference to a typed function?
    pub const fn is_typed_func_ref(&self) -> bool {
        self.discriminant() == Self::TYPED_FUNC_DISCRIMINANT
    }

    /// If this is a reference to a typed function, get its type index.
    pub const fn type_index(&self) -> Option<u32> {
        if self.is_typed_func_ref() {
            Some(self.as_u32() & Self::INDEX_MASK)
        } else {
            None
        }
    }

    /// Is this an untyped function reference aka `(ref null func)` aka `funcref` aka `anyfunc`?
    pub fn is_func_ref(&self) -> bool {
        self.discriminant() == Self::ANY_FUNC_DISCRIMINANT
    }

    /// Is this a `(ref null extern)` aka `externref`?
    pub fn is_extern_ref(&self) -> bool {
        self.discriminant() == Self::EXTERN_DISCRIMINANT
    }

    /// Is this ref type nullable?
    pub const fn is_nullable(&self) -> bool {
        self.as_u32() & Self::NULLABLE_MASK != 0
    }

    /// Get the non-nullable version of this ref type.
    pub fn as_non_null(&self) -> Self {
        Self::from_u32(self.as_u32() & !Self::NULLABLE_MASK)
    }

    /// Get the heap type that this is a reference to.
    pub fn heap_type(&self) -> HeapType {
        match self.discriminant() {
            Self::TYPED_FUNC_DISCRIMINANT => HeapType::TypedFunc(self.type_index().unwrap()),
            Self::ANY_FUNC_DISCRIMINANT => HeapType::Func,
            Self::EXTERN_DISCRIMINANT => HeapType::Extern,
            _ => unreachable!(),
        }
    }
}

impl<'a> FromReader<'a> for RefType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.read()? {
            0x70 => Ok(RefType::FUNCREF),
            0x6F => Ok(RefType::EXTERNREF),
            byte @ (0x6B | 0x6C) => {
                let nullable = byte == 0x6C;
                let pos = reader.original_position();
                RefType::new(nullable, reader.read()?)
                    .ok_or_else(|| crate::BinaryReaderError::new("type index too large", pos))
            }
            _ => bail!(reader.original_position(), "malformed reference type"),
        }
    }
}

/// A heap type from function references. When the proposal is disabled, Index
/// is an invalid type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum HeapType {
    /// Function of the type at the given index.
    TypedFunc(u32),
    /// Untyped (any) function.
    Func,
    /// External heap type.
    Extern,
}

impl<'a> FromReader<'a> for HeapType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.peek()? {
            0x70 => {
                reader.position += 1;
                Ok(HeapType::Func)
            }
            0x6F => {
                reader.position += 1;
                Ok(HeapType::Extern)
            }
            _ => {
                let idx = match u32::try_from(reader.read_var_s33()?) {
                    Ok(idx) => idx,
                    Err(_) => {
                        bail!(reader.original_position(), "invalid function heap type",);
                    }
                };
                Ok(HeapType::TypedFunc(idx))
            }
        }
    }
}

/// Represents a type in a WebAssembly module.
#[derive(Debug, Clone)]
pub enum Type {
    /// The type is for a function.
    Func(FuncType),
}

/// Represents a type of a function in a WebAssembly module.
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct FuncType {
    /// The combined parameters and result types.
    params_results: Box<[ValType]>,
    /// The number of parameter types.
    len_params: usize,
}

impl Debug for FuncType {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("FuncType")
            .field("params", &self.params())
            .field("returns", &self.results())
            .finish()
    }
}

impl FuncType {
    /// Creates a new [`FuncType`] from the given `params` and `results`.
    pub fn new<P, R>(params: P, results: R) -> Self
    where
        P: IntoIterator<Item = ValType>,
        R: IntoIterator<Item = ValType>,
    {
        let mut buffer = params.into_iter().collect::<Vec<_>>();
        let len_params = buffer.len();
        buffer.extend(results);
        Self {
            params_results: buffer.into(),
            len_params,
        }
    }

    /// Creates a new [`FuncType`] fom its raw parts.
    ///
    /// # Panics
    ///
    /// If `len_params` is greater than the length of `params_results` combined.
    pub(crate) fn from_raw_parts(params_results: Box<[ValType]>, len_params: usize) -> Self {
        assert!(len_params <= params_results.len());
        Self {
            params_results,
            len_params,
        }
    }

    /// Returns a shared slice to the parameter types of the [`FuncType`].
    #[inline]
    pub fn params(&self) -> &[ValType] {
        &self.params_results[..self.len_params]
    }

    /// Returns a shared slice to the result types of the [`FuncType`].
    #[inline]
    pub fn results(&self) -> &[ValType] {
        &self.params_results[self.len_params..]
    }
}

/// Represents a table's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TableType {
    /// The table's element type.
    pub element_type: RefType,
    /// Initial size of this table, in elements.
    pub initial: u32,
    /// Optional maximum size of the table, in elements.
    pub maximum: Option<u32>,
}

/// Represents a memory's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct MemoryType {
    /// Whether or not this is a 64-bit memory, using i64 as an index. If this
    /// is false it's a 32-bit memory using i32 as an index.
    ///
    /// This is part of the memory64 proposal in WebAssembly.
    pub memory64: bool,

    /// Whether or not this is a "shared" memory, indicating that it should be
    /// send-able across threads and the `maximum` field is always present for
    /// valid types.
    ///
    /// This is part of the threads proposal in WebAssembly.
    pub shared: bool,

    /// Initial size of this memory, in wasm pages.
    ///
    /// For 32-bit memories (when `memory64` is `false`) this is guaranteed to
    /// be at most `u32::MAX` for valid types.
    pub initial: u64,

    /// Optional maximum size of this memory, in wasm pages.
    ///
    /// For 32-bit memories (when `memory64` is `false`) this is guaranteed to
    /// be at most `u32::MAX` for valid types. This field is always present for
    /// valid wasm memories when `shared` is `true`.
    pub maximum: Option<u64>,
}

impl MemoryType {
    /// Gets the index type for the memory.
    pub fn index_type(&self) -> ValType {
        if self.memory64 {
            ValType::I64
        } else {
            ValType::I32
        }
    }
}

/// Represents a global's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct GlobalType {
    /// The global's type.
    pub content_type: ValType,
    /// Whether or not the global is mutable.
    pub mutable: bool,
}

/// Represents a tag kind.
#[derive(Clone, Copy, Debug)]
pub enum TagKind {
    /// The tag is an exception type.
    Exception,
}

/// A tag's type.
#[derive(Clone, Copy, Debug)]
pub struct TagType {
    /// The kind of tag
    pub kind: TagKind,
    /// The function type this tag uses.
    pub func_type_idx: u32,
}

/// A reader for the type section of a WebAssembly module.
pub type TypeSectionReader<'a> = SectionLimited<'a, Type>;

impl<'a> FromReader<'a> for Type {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        Ok(match reader.read_u8()? {
            0x60 => Type::Func(reader.read()?),
            x => return reader.invalid_leading_byte(x, "type"),
        })
    }
}

impl<'a> FromReader<'a> for FuncType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        let mut params_results = reader
            .read_iter(MAX_WASM_FUNCTION_PARAMS, "function params")?
            .collect::<Result<Vec<_>>>()?;
        let len_params = params_results.len();
        let results = reader.read_iter(MAX_WASM_FUNCTION_RETURNS, "function returns")?;
        params_results.reserve(results.size_hint().0);
        for result in results {
            params_results.push(result?);
        }
        Ok(FuncType::from_raw_parts(params_results.into(), len_params))
    }
}