wasmi_ir/enum.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
use crate::{core::TrapCode, for_each_op, index::*, *};
use ::core::num::{NonZeroI32, NonZeroI64, NonZeroU32, NonZeroU64};
macro_rules! define_enum {
(
$(
$( #[doc = $doc:literal] )*
#[snake_name($snake_name:ident)]
$name:ident
$(
{
$(
@ $result_name:ident: $result_ty:ty,
)?
$(
$( #[$field_docs:meta] )*
$field_name:ident: $field_ty:ty
),*
$(,)?
}
)?
),* $(,)?
) => {
/// A Wasmi instruction.
///
/// Wasmi instructions are composed of so-called instruction words.
/// This type represents all such words and for simplicity we call the type [`Instruction`], still.
///
/// Most instructions are composed of a single instruction word. An example of
/// this is [`Instruction::I32Add`]. However, some instructions, like
/// [`Instruction::Select`], are composed of two or more instruction words.
///
/// The Wasmi bytecode translation makes sure that instructions always appear in valid sequences.
/// The Wasmi executor relies on the guarantees that the Wasmi translator provides.
///
/// The documentation of each [`Instruction`] describes its encoding in the
/// `#Encoding` section of its documentation if it requires more than a single
/// instruction for its encoding.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u16)]
pub enum Instruction {
$(
$( #[doc = $doc] )*
$name
$(
{
$(
/// The register(s) storing the result of the instruction.
$result_name: $result_ty,
)?
$(
$( #[$field_docs] )*
$field_name: $field_ty
),*
}
)?
),*
}
impl Instruction {
$(
#[doc = concat!("Creates a new [`Instruction::", stringify!($name), "`].")]
pub fn $snake_name(
$(
$( $result_name: impl Into<$result_ty>, )?
$( $field_name: impl Into<$field_ty> ),*
)?
) -> Self {
Self::$name {
$(
$( $result_name: $result_name.into(), )?
$( $field_name: $field_name.into() ),*
)?
}
}
)*
}
};
}
for_each_op::for_each_op!(define_enum);
/// Helper trait for [`Instruction::result`] method implementation.
trait IntoReg: Sized {
/// Converts `self` into a [`Reg`] if possible.
fn into_reg(self) -> Option<Reg> {
None
}
}
impl IntoReg for Reg {
fn into_reg(self) -> Option<Reg> {
Some(self)
}
}
impl IntoReg for RegSpan {}
impl<const N: u16> IntoReg for FixedRegSpan<N> {}
impl IntoReg for () {}
macro_rules! define_result {
(
$(
$( #[doc = $doc:literal] )*
#[snake_name($snake_name:ident)]
$name:ident
$(
{
$(
@ $result_name:ident: $result_ty:ty,
)?
$(
$( #[$field_docs:meta] )*
$field_name:ident: $field_ty:ty
),*
$(,)?
}
)?
),* $(,)?
) => {
impl Instruction {
/// Returns the result [`Reg`] for `self`.
///
/// Returns `None` if `self` does not statically return a single [`Reg`].
pub fn result(&self) -> Option<$crate::Reg> {
match *self {
$(
Self::$name { $( $( $result_name, )? )* .. } => {
IntoReg::into_reg((
$( $( $result_name )? )*
))
}
)*
}
}
}
};
}
for_each_op::for_each_op!(define_result);
impl Instruction {
/// Creates a new [`Instruction::ReturnReg2`] for the given [`Reg`] indices.
pub fn return_reg2_ext(reg0: impl Into<Reg>, reg1: impl Into<Reg>) -> Self {
Self::return_reg2([reg0.into(), reg1.into()])
}
/// Creates a new [`Instruction::ReturnReg3`] for the given [`Reg`] indices.
pub fn return_reg3_ext(
reg0: impl Into<Reg>,
reg1: impl Into<Reg>,
reg2: impl Into<Reg>,
) -> Self {
Self::return_reg3([reg0.into(), reg1.into(), reg2.into()])
}
/// Creates a new [`Instruction::ReturnMany`] for the given [`Reg`] indices.
pub fn return_many_ext(
reg0: impl Into<Reg>,
reg1: impl Into<Reg>,
reg2: impl Into<Reg>,
) -> Self {
Self::return_many([reg0.into(), reg1.into(), reg2.into()])
}
/// Creates a new [`Instruction::ReturnNezReg2`] for the given `condition` and `value`.
pub fn return_nez_reg2_ext(
condition: impl Into<Reg>,
value0: impl Into<Reg>,
value1: impl Into<Reg>,
) -> Self {
Self::return_nez_reg2(condition, [value0.into(), value1.into()])
}
/// Creates a new [`Instruction::ReturnNezMany`] for the given `condition` and `value`.
pub fn return_nez_many_ext(
condition: impl Into<Reg>,
head0: impl Into<Reg>,
head1: impl Into<Reg>,
) -> Self {
Self::return_nez_many(condition, [head0.into(), head1.into()])
}
/// Creates a new [`Instruction::Copy2`].
pub fn copy2_ext(results: RegSpan, value0: impl Into<Reg>, value1: impl Into<Reg>) -> Self {
let span = FixedRegSpan::new(results).unwrap_or_else(|_| {
panic!("encountered invalid `results` `RegSpan` for `Copy2`: {results:?}")
});
Self::copy2(span, [value0.into(), value1.into()])
}
/// Creates a new [`Instruction::CopyMany`].
pub fn copy_many_ext(results: RegSpan, head0: impl Into<Reg>, head1: impl Into<Reg>) -> Self {
Self::copy_many(results, [head0.into(), head1.into()])
}
/// Creates a new [`Instruction::CopyManyNonOverlapping`].
pub fn copy_many_non_overlapping_ext(
results: RegSpan,
head0: impl Into<Reg>,
head1: impl Into<Reg>,
) -> Self {
Self::copy_many_non_overlapping(results, [head0.into(), head1.into()])
}
/// Creates a new [`Instruction::Register2`] instruction parameter.
pub fn register2_ext(reg0: impl Into<Reg>, reg1: impl Into<Reg>) -> Self {
Self::register2([reg0.into(), reg1.into()])
}
/// Creates a new [`Instruction::Register3`] instruction parameter.
pub fn register3_ext(reg0: impl Into<Reg>, reg1: impl Into<Reg>, reg2: impl Into<Reg>) -> Self {
Self::register3([reg0.into(), reg1.into(), reg2.into()])
}
/// Creates a new [`Instruction::RegisterList`] instruction parameter.
pub fn register_list_ext(
reg0: impl Into<Reg>,
reg1: impl Into<Reg>,
reg2: impl Into<Reg>,
) -> Self {
Self::register_list([reg0.into(), reg1.into(), reg2.into()])
}
}
#[test]
fn size_of() {
// Note: In case this test starts failing:
//
// There currently is a bug in the Rust compiler that causes
// Rust `enum` definitions with `#[repr(uN)]` to be incorrectly
// sized: https://github.com/rust-lang/rust/issues/53657
//
// Until that bug is fixed we need to order the `enum` variant
// fields in a precise order to end up with the correct `enum` size.
assert_eq!(::core::mem::size_of::<Instruction>(), 8);
assert_eq!(::core::mem::align_of::<Instruction>(), 4);
}