1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
use std::collections::HashMap;
use std::ops::Deref;
use std::sync::Arc;
use async_nats::jetstream::kv::{Entry, EntryError, Operation};
use async_nats::{jetstream::kv::Store, Client};
use futures::StreamExt;
use futures::TryStreamExt;
use tokio::sync::RwLock;
use tokio::task::JoinHandle;
use tracing::{debug, error};
use crate::LinkDefinition;
use crate::Result;
use super::{
delete_link, ld_hash, ld_hash_raw, put_link, KvStore, CLAIMS_PREFIX, LINKDEF_PREFIX,
SUBJECT_KEY,
};
type ClaimsMap = HashMap<String, HashMap<String, String>>;
#[derive(Clone, Debug)]
pub struct CachedKvStore {
store: Store,
linkdefs: Arc<RwLock<HashMap<String, LinkDefinition>>>,
claims: Arc<RwLock<ClaimsMap>>,
handle: Arc<JoinHandle<()>>,
}
impl Drop for CachedKvStore {
fn drop(&mut self) {
self.handle.abort();
}
}
impl AsRef<Store> for CachedKvStore {
fn as_ref(&self) -> &Store {
&self.store
}
}
impl Deref for CachedKvStore {
type Target = Store;
fn deref(&self) -> &Self::Target {
&self.store
}
}
impl CachedKvStore {
/// Create a new KV store with the given configuration. This function will do an initial fetch
/// of all claims and linkdefs from the store and then start a watcher to keep the cache up to
/// date. All data fetched from this store will be from the in memory cache
pub async fn new(nc: Client, lattice_prefix: &str, js_domain: Option<String>) -> Result<Self> {
let store = super::get_kv_store(nc, lattice_prefix, js_domain).await?;
let linkdefs = Arc::new(RwLock::new(HashMap::new()));
let claims = Arc::new(RwLock::new(ClaimsMap::default()));
let linkdefs_clone = linkdefs.clone();
let claims_clone = claims.clone();
let cloned_store = store.clone();
let (tx, rx) = tokio::sync::oneshot::channel::<Result<()>>();
let kvstore = CachedKvStore {
store,
linkdefs,
claims,
handle: Arc::new(tokio::spawn(async move {
// We have to create this in here and use the oneshot to return the error because of
// lifetimes
let mut watcher = match cloned_store.watch_all().await {
// NOTE(thomastaylor312) We are unwrapping the sends here because it only fails
// if the rx has hung up. Since we are literally using it down below in the new
// function, this shouldn't happen and if it does it is programmer error
Ok(w) => w,
Err(e) => {
error!(error = %e, "Unable to start watcher");
tx.send(Err(e.into())).unwrap();
return;
}
};
// Start with an initial list of the data before consuming events from the watcher.
// This will ensure we have the most up to date data from the watcher (which we
// started before this step) as well as all entries from the store
let keys = match cloned_store.keys().await {
Ok(k) => k,
Err(e) => {
error!(error = %e, "Unable to get keys from store");
tx.send(Err(e.into())).unwrap();
return;
}
};
let futs = match keys
.map_ok(|k| cloned_store.entry(k))
.try_collect::<Vec<_>>()
.await
{
Ok(f) => f,
Err(e) => {
error!(error = %e, "Unable to get keys from store");
tx.send(Err(e.into())).unwrap();
return;
}
};
let all_entries = match futures::future::join_all(futs)
.await
.into_iter()
.filter_map(|res| res.transpose())
.collect::<std::result::Result<Vec<_>, EntryError>>()
{
Ok(entries) => entries,
Err(e) => {
error!(error = %e, "Unable to get values from store");
tx.send(Err(e.into())).unwrap();
return;
}
};
tx.send(Ok(())).unwrap();
for entry in all_entries {
handle_entry(entry, linkdefs_clone.clone(), claims_clone.clone()).await;
}
while let Some(event) = watcher.next().await {
let entry = match event {
Ok(en) => en,
Err(e) => {
error!(error = %e, "Error from latticedata watcher");
continue;
}
};
handle_entry(entry, linkdefs_clone.clone(), claims_clone.clone()).await;
}
// NOTE(thomastaylor312): We should probably do something to automatically restart
// the watch if something fails. But for now this should be ok
error!("Cache watcher has exited");
})),
};
rx.await??;
Ok(kvstore)
}
}
#[async_trait::async_trait]
impl KvStore for CachedKvStore {
/// Return a copy of all link definitions in the store
// TODO(thomastaylor312): This should probably return a reference to the link definitions, but
// that involves wrapping this with an owned ReadWriteLockGuard, which is probably overkill for
// now
async fn get_links(&self) -> Result<Vec<LinkDefinition>> {
Ok(self.linkdefs.read().await.values().cloned().collect())
}
/// Return a copy of all claims in the store
// See comment above about get_links
async fn get_all_claims(&self) -> Result<Vec<HashMap<String, String>>> {
Ok(self.claims.read().await.values().cloned().collect())
}
/// Return a copy of all provider claims in the store
// See comment above about get_links
async fn get_provider_claims(&self) -> Result<Vec<HashMap<String, String>>> {
Ok(self
.claims
.read()
.await
.iter()
// V is the first character of a provider nkey
.filter_map(|(key, values)| key.starts_with('V').then_some(values))
.cloned()
.collect())
}
/// Return a copy of all actor claims in the store
// See comment above about get_links
async fn get_actor_claims(&self) -> Result<Vec<HashMap<String, String>>> {
Ok(self
.claims
.read()
.await
.iter()
// M is the first character of an actor nkey
.filter_map(|(key, values)| key.starts_with('M').then_some(values))
.cloned()
.collect())
}
/// A convenience function to get a list of link definitions filtered using the given filter
/// function
async fn get_filtered_links<F>(&self, mut filter_fn: F) -> Result<Vec<LinkDefinition>>
where
F: FnMut(&LinkDefinition) -> bool + Send,
{
Ok(self
.linkdefs
.read()
.await
.values()
// We have to pass in manually because this is a technically an &&LinkDefinition
.filter(|ld| filter_fn(ld))
.cloned()
.collect())
}
/// Get a link definition for a specific ID (actor_id, contract_id, link_name)
async fn get_link(
&self,
actor_id: &str,
link_name: &str,
contract_id: &str,
) -> Result<Option<LinkDefinition>> {
Ok(self
.linkdefs
.read()
.await
.get(&ld_hash_raw(actor_id, contract_id, link_name))
.cloned())
}
/// Get claims for a specific provider or actor id
async fn get_claims(&self, id: &str) -> Result<Option<HashMap<String, String>>> {
Ok(self.claims.read().await.get(id).cloned())
}
async fn put_link(&self, ld: LinkDefinition) -> Result<()> {
put_link(&self.store, &ld).await?;
// Immediately add the link to the local cache. It will get overwritten by the watcher as
// soon as the event comes in, but this way a user can immediately get the link they just
// put if needed
self.linkdefs.write().await.insert(ld_hash(&ld), ld);
Ok(())
}
async fn delete_link(&self, actor_id: &str, contract_id: &str, link_name: &str) -> Result<()> {
delete_link(&self.store, actor_id, contract_id, link_name).await?;
// Immediately delete the link from the local cache. It will get deleted by the watcher as
// soon as the event comes in, but this way a user that calls get links will see it gone
// immediately
self.linkdefs
.write()
.await
.remove(&ld_hash_raw(actor_id, contract_id, link_name));
Ok(())
}
}
async fn handle_entry(
entry: Entry,
linkdefs: Arc<RwLock<HashMap<String, LinkDefinition>>>,
claims: Arc<RwLock<ClaimsMap>>,
) {
if entry.key.starts_with(LINKDEF_PREFIX) {
handle_linkdef(entry, linkdefs).await;
} else if entry.key.starts_with(CLAIMS_PREFIX) {
handle_claim(entry, claims).await;
} else {
debug!(key = %entry.key, "Ignoring entry with unrecognized key");
}
}
async fn handle_linkdef(entry: Entry, linkdefs: Arc<RwLock<HashMap<String, LinkDefinition>>>) {
match entry.operation {
Operation::Delete | Operation::Purge => {
let mut linkdefs = linkdefs.write().await;
linkdefs.remove(entry.key.trim_start_matches(LINKDEF_PREFIX));
}
Operation::Put => {
let ld: LinkDefinition = match serde_json::from_slice(&entry.value) {
Ok(ld) => ld,
Err(e) => {
error!(error = %e, "Unable to deserialize as link definition");
return;
}
};
let key = entry.key.trim_start_matches(LINKDEF_PREFIX).to_owned();
linkdefs.write().await.insert(key, ld);
}
}
}
async fn handle_claim(entry: Entry, claims: Arc<RwLock<ClaimsMap>>) {
match entry.operation {
Operation::Delete | Operation::Purge => {
let mut claims = claims.write().await;
claims.remove(entry.key.trim_start_matches(CLAIMS_PREFIX));
}
Operation::Put => {
let json: HashMap<String, String> = match serde_json::from_slice(&entry.value) {
Ok(j) => j,
Err(e) => {
error!(error = %e, "Unable to deserialize claim as json");
return;
}
};
let sub = match json.get(SUBJECT_KEY) {
Some(s) => s.to_owned(),
None => {
debug!("Ignoring claim without sub");
return;
}
};
claims.write().await.insert(sub, json);
}
}
}