1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
use std::marker::PhantomData;

use alloc::vec::Vec;
use thiserror::Error;
use warg_crypto::{
    hash::{Hash, SupportedDigest},
    VisitBytes,
};

use super::{hash_branch, hash_leaf, node::Node, LogData};

/// A proof that a leaf is present for a root
#[derive(Debug, Clone, PartialEq)]
pub struct InclusionProof<D: SupportedDigest, V: VisitBytes> {
    /// The node that you are checking is present in the given point.
    leaf: Node,
    /// The point in the logs history where the leaf should be present
    log_length: usize,
    /// Marker for digest type
    _digest: PhantomData<D>,
    /// Marker for value type
    _value: PhantomData<V>,
}

/// An error occurring when attempting to validate an inclusion proof.
#[derive(Error, Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum InclusionProofError {
    /// Indicates that the leaf is too new to be present at
    /// the given point in the log history.
    #[error("leaf newer than when it should be included")]
    LeafTooNew,
    /// Indicates that certain hashes weren't known that are
    /// needed to perform proof validation.
    #[error("required hash for proof is not available")]
    HashNotKnown,
}

/// The nodes visited when verifying the inclusion proof.
///
/// The first [InclusionProofWalk.initial_walk_len] nodes
/// describe the walk up to the balanced root which is
/// the leafs ancestor.
///
/// The next [InclusionProofWalk.lower_broots] nodes
/// describe the walk from the rightmost (lowest) broot
/// up towards the broot that was reached.
///
/// The next [InclusionProofWalk.upper_broots] nodes
/// describes the walk from the intersection of the
/// previous two to the leftmost (tallest) broot.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InclusionProofWalk {
    pub(crate) nodes: Vec<Node>,
    initial_walk_len: usize,
    lower_broots: usize,
    upper_broots: usize,
}

impl InclusionProofWalk {
    fn initial_walk_end(&self) -> usize {
        self.initial_walk_len
    }

    fn lower_broot_walk_end(&self) -> usize {
        self.initial_walk_end() + self.lower_broots
    }

    fn upper_broot_walk_end(&self) -> usize {
        self.lower_broot_walk_end() + self.upper_broots
    }

    fn initial_walk(&self) -> &[Node] {
        &self.nodes[..self.initial_walk_end()]
    }

    fn lower_broot_walk(&self) -> &[Node] {
        &self.nodes[self.initial_walk_end()..self.lower_broot_walk_end()]
    }

    fn upper_broot_walk(&self) -> &[Node] {
        &self.nodes[self.lower_broot_walk_end()..self.upper_broot_walk_end()]
    }
}

impl<D, V> InclusionProof<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    pub(crate) fn new(leaf: Node, log_length: usize) -> Self {
        Self {
            leaf,
            log_length,
            _digest: PhantomData,
            _value: PhantomData,
        }
    }

    /// Get the node that this proof proves the inclusion of
    pub fn leaf(&self) -> Node {
        self.leaf
    }

    /// Get the length of the log this proof shows the leaf was included in
    pub fn log_length(&self) -> usize {
        self.log_length
    }

    /// Collects all of the node indices that must be visited
    /// in order to validate the inlcusion proof into.
    pub fn walk(&self) -> Result<InclusionProofWalk, InclusionProofError> {
        let length = self.log_length;
        let broots = Node::broots_for_len(length);
        let mut current_node = self.leaf;

        if !current_node.exists_at_length(length) {
            return Err(InclusionProofError::LeafTooNew);
        }

        let mut nodes = Vec::new();

        // Walk upwards until you hit a balanced root for the original tree
        while !broots.contains(&current_node) {
            let sibling = current_node.sibling();
            nodes.push(sibling);
            current_node = current_node.parent();
        }

        let initial_walk_len = nodes.len();

        let index = broots
            .iter()
            .position(|broot| *broot == current_node)
            .unwrap();

        let lower_broots = broots.len() - index - 1;
        for broot in broots[index + 1..].iter().rev() {
            nodes.push(*broot);
        }

        let upper_broots = index;
        for broot in broots[..index].iter().rev() {
            nodes.push(*broot);
        }

        Ok(InclusionProofWalk {
            nodes,
            initial_walk_len,
            lower_broots,
            upper_broots,
        })
    }

    /// Evaluate an inclusion proof.
    /// Callers should verify that the returned root matches their expectation.
    ///
    /// Walks the inclusion proof, hashes each layer, returns the root hash.
    pub fn evaluate_value(
        &self,
        hashes: &impl LogData<D, V>,
        value: &V,
    ) -> Result<Hash<D>, InclusionProofError> {
        self.evaluate_hash(hashes, hash_leaf(value))
    }

    /// Evaluate an inclusion proof.
    /// Callers should verify that the returned root matches their expectation.
    ///
    /// Walks the inclusion proof, hashes each layer, returns the root hash.
    pub fn evaluate_hash(
        &self,
        hashes: &impl LogData<D, V>,
        hash: Hash<D>,
    ) -> Result<Hash<D>, InclusionProofError> {
        let leaf = (self.leaf, hash);
        let walk = self.walk()?;

        // Ensure all nodes are known
        if walk.nodes.iter().any(|node| !hashes.has_hash(*node)) {
            return Err(InclusionProofError::HashNotKnown);
        }

        // Perform initial walk up to the ancestor broot
        let current = walk
            .initial_walk()
            .iter()
            .map(|node| (*node, hashes.hash_for(*node).unwrap()))
            .fold(leaf, combine);

        // Summarize all of the smaller broots
        let lower_broot = walk
            .lower_broot_walk()
            .iter()
            .map(|node| (*node, hashes.hash_for(*node).unwrap()))
            .reduce(combine);

        // Combine broot with summary of smaller roots
        let current = match lower_broot {
            Some(lower_broot) => combine(current, lower_broot),
            None => current,
        };

        // Combine with any larger roots
        let current = walk
            .upper_broot_walk()
            .iter()
            .map(|node| (*node, hashes.hash_for(*node).unwrap()))
            .fold(current, combine);

        Ok(current.1)
    }
}

fn combine<D: SupportedDigest>(first: (Node, Hash<D>), second: (Node, Hash<D>)) -> (Node, Hash<D>) {
    let (lhs, rhs) = if first.0.index() < second.0.index() {
        (first.1, second.1)
    } else {
        (second.1, first.1)
    };

    (second.0, hash_branch::<D>(lhs, rhs))
}

/// A proof of the consistency between two points in the
/// logs history.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct ConsistencyProof<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    /// The older of the two points
    pub old_length: usize,
    /// The newer of the two points
    pub new_length: usize,
    /// Marker for digest type
    _digest: PhantomData<D>,
    /// Marker for value type
    _value: PhantomData<V>,
}

/// Errors occurring when validating a consistency proof
#[derive(Error, Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum ConsistencyProofError {
    /// Happens when old_length > new_length
    #[error("tries to prove later value comes before earlier")]
    PointsOutOfOrder,
    /// Happens when hashes required for evaluation were not present
    #[error("a hash needed for evaluation was not available")]
    HashNotKnown,
    /// Happens when an inclusion proof is evaluated and has an error
    #[error("constituent inclusion proof failed")]
    InclusionError(#[from] InclusionProofError),
    /// Happens when two inclusion proofs are evaluated and produce different roots
    #[error("constituent inclusion proofs diverge produce different roots")]
    DivergingRoots,
}

impl<D, V> ConsistencyProof<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    pub(crate) fn new(old_length: usize, new_length: usize) -> Self {
        Self {
            old_length,
            new_length,
            _digest: PhantomData,
            _value: PhantomData,
        }
    }

    /// Evaluate an inclusion proof.
    /// Callers should verify that the returned root matches their expectation.
    ///
    /// Walks the inclusion proof, hashes each layer, returns the root hash.
    pub fn evaluate(
        &self,
        hashes: &impl LogData<D, V>,
    ) -> Result<(Hash<D>, Hash<D>), ConsistencyProofError> {
        let mut old_broots = Vec::new();
        let mut new_root = None;

        for inc_proof in self.inclusions().unwrap() {
            let leaf_hash = hashes
                .hash_for(inc_proof.leaf())
                .ok_or(ConsistencyProofError::HashNotKnown)?;
            old_broots.push(leaf_hash.clone());
            let found_root = inc_proof.evaluate_hash(hashes, leaf_hash)?;
            if let Some(previous_root) = &new_root {
                if previous_root != &found_root {
                    return Err(ConsistencyProofError::DivergingRoots);
                }
            } else {
                new_root = Some(found_root);
            }
        }

        let old_root = old_broots
            .into_iter()
            .rev()
            .reduce(|new, old| hash_branch(old, new));
        // Unwrap is safe because the minimal consistency proof always has at least one inclusion proof
        let old_root = old_root.unwrap();
        let new_root = new_root.unwrap();
        Ok((old_root, new_root))
    }

    /// Convert the consistency proof into a sequence of inclusion proofs.
    /// Each inclusion proof verifies that one of the balanced roots
    /// of the old tree is present in the root of the new tree.
    pub fn inclusions(&self) -> Result<Vec<InclusionProof<D, V>>, ConsistencyProofError> {
        if self.old_length > self.new_length {
            return Err(ConsistencyProofError::PointsOutOfOrder);
        }

        let inclusions = Node::broots_for_len(self.old_length)
            .into_iter()
            .map(|broot| InclusionProof::new(broot, self.new_length))
            .collect();

        Ok(inclusions)
    }
}

#[cfg(test)]
mod tests {
    use crate::log::{LogBuilder, VecLog};

    use super::*;

    use warg_crypto::hash::Sha256;

    #[test]
    fn test_inc_even_2() {
        let mut log: VecLog<Sha256, u8> = VecLog::default();

        log.push(&100);
        log.push(&102);

        let inc_proof = InclusionProof::new(Node(0), 2);
        let expected = InclusionProofWalk {
            nodes: vec![Node(2)],
            initial_walk_len: 1,
            lower_broots: 0,
            upper_broots: 0,
        };
        assert_eq!(inc_proof.walk().unwrap(), expected);

        assert_eq!(
            inc_proof.evaluate_value(&log, &100).unwrap(),
            log.as_ref()[1].clone()
        );
    }

    #[test]
    fn test_inc_odd_3() {
        let mut log: VecLog<Sha256, u8> = VecLog::default();

        log.push(&100);
        log.push(&102);
        log.push(&104);

        let root: Hash<Sha256> = hash_branch(log.as_ref()[1].clone(), log.as_ref()[4].clone());

        // node 0
        let inc_proof = InclusionProof::new(Node(0), 3);
        let expected = InclusionProofWalk {
            nodes: vec![Node(2), Node(4)],
            initial_walk_len: 1,
            lower_broots: 1,
            upper_broots: 0,
        };
        assert_eq!(inc_proof.walk().unwrap(), expected);
        assert_eq!(inc_proof.evaluate_value(&log, &100).unwrap(), root);

        // node 2
        let inc_proof = InclusionProof::new(Node(2), 3);
        let expected = InclusionProofWalk {
            nodes: vec![Node(0), Node(4)],
            initial_walk_len: 1,
            lower_broots: 1,
            upper_broots: 0,
        };
        assert_eq!(inc_proof.walk().unwrap(), expected);
        assert_eq!(inc_proof.evaluate_value(&log, &102u8).unwrap(), root);

        // node 4
        let inc_proof = InclusionProof::new(Node(4), 3);
        let expected = InclusionProofWalk {
            nodes: vec![Node(1)],
            initial_walk_len: 0,
            lower_broots: 0,
            upper_broots: 1,
        };
        assert_eq!(inc_proof.walk().unwrap(), expected);
        assert_eq!(inc_proof.evaluate_value(&log, &104u8).unwrap(), root);
    }

    #[test]
    fn test_inc_odd_7() {
        let mut log: VecLog<Sha256, u8> = VecLog::default();

        log.push(&100);
        log.push(&102);
        log.push(&104);
        log.push(&106);
        log.push(&108);
        log.push(&110);
        log.push(&112);

        let artificial_branch: Hash<Sha256> =
            hash_branch(log.as_ref()[9].clone(), log.as_ref()[12].clone());
        let root: Hash<Sha256> = hash_branch(log.as_ref()[3].clone(), artificial_branch);

        // node 6
        let inc_proof = InclusionProof::new(Node(6), 7);
        let expected = InclusionProofWalk {
            nodes: vec![Node(4), Node(1), Node(12), Node(9)],
            initial_walk_len: 2,
            lower_broots: 2,
            upper_broots: 0,
        };
        assert_eq!(inc_proof.walk().unwrap(), expected);
        assert_eq!(inc_proof.evaluate_value(&log, &106).unwrap(), root);
    }
}