1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
use core::fmt::Debug;
use std::marker::PhantomData;

use alloc::{vec, vec::Vec};
use anyhow::Error;
use prost::Message;

use warg_crypto::hash::{Hash, SupportedDigest};
use warg_crypto::VisitBytes;
use warg_protobuf::internal as protobuf;

use super::node::{Node, Side};
use super::{hash_branch, hash_empty, hash_leaf, Checkpoint, LogBuilder, LogData};

/// A verifiable log where the node hashes are stored
/// contiguously in memory by index.
#[derive(Debug, Clone)]
pub struct VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    /// The number of entries
    length: usize,
    /// The tree data structure
    tree: Vec<Hash<D>>,
    /// Marker for value type
    _value: PhantomData<V>,
}

/// Height is the number of child-edges between the node and leaves
/// A leaf has height 0
///
/// Length is the number of total leaf nodes present
impl<D, V> VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    /// Returns the number of entries in the log.
    pub fn length(&self) -> usize {
        self.length
    }

    fn get_digest(&self, node: Node) -> Hash<D> {
        self.tree[node.index()].clone()
    }

    fn set_digest(&mut self, node: Node, digest: Hash<D>) {
        self.tree[node.index()] = digest;
    }

    /// Get the root of the log when it was at some length
    fn root_at(&self, length: usize) -> Option<Hash<D>> {
        if length > self.length {
            return None;
        }

        let roots = Node::broots_for_len(length);

        let result = roots
            .into_iter()
            .rev()
            .map(|node| self.hash_for(node).unwrap())
            .reduce(|old, new| {
                // Ordering due to reversal of iterator
                hash_branch::<D>(new, old)
            })
            .unwrap_or_else(hash_empty::<D>);

        Some(result)
    }

    /// Turn a VecLog into bytes using protobuf
    pub fn to_protobuf(self) -> Vec<u8> {
        let proto: protobuf::VecLog = self.into();
        proto.encode_to_vec()
    }

    /// Parse a VecLog from bytes using protobuf
    pub fn from_protobuf(bytes: &[u8]) -> Result<Self, Error> {
        let proto = protobuf::VecLog::decode(bytes)?;
        let value = proto.try_into()?;
        Ok(value)
    }
}

impl<D, V> Default for VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    fn default() -> Self {
        VecLog {
            length: 0,
            tree: vec![],
            _value: PhantomData,
        }
    }
}

impl<D, V> LogBuilder<D, V> for VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    fn checkpoint(&self) -> Checkpoint<D> {
        Checkpoint {
            root: self.root_at(self.length).unwrap(),
            length: self.length,
        }
    }

    fn push(&mut self, entry: &V) -> Node {
        // Compute entry digest
        let leaf_digest = hash_leaf::<D>(entry);

        // Record entry
        self.length += 1;

        // Push spacer (if necessary) and entry digest
        if self.length != 1 {
            self.tree.push(hash_empty::<D>());
        }
        let leaf_node = Node(self.tree.len());
        self.tree.push(leaf_digest.clone());

        // Fill in newly known hashes
        let mut current_digest = leaf_digest;
        let mut current_node = leaf_node;
        while current_node.side() == Side::Right {
            let sibling = current_node.left_sibling();
            let parent = current_node.parent();

            let lhs = self.get_digest(sibling);
            let rhs = current_digest;

            current_digest = hash_branch::<D>(lhs, rhs);
            current_node = parent;

            self.set_digest(current_node, current_digest.clone());
        }

        leaf_node
    }
}

impl<D, V> AsRef<[Hash<D>]> for VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    fn as_ref(&self) -> &[Hash<D>] {
        &self.tree[..]
    }
}

impl<D, V> LogData<D, V> for VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    fn hash_for(&self, node: Node) -> Option<Hash<D>> {
        self.tree.get(node.index()).cloned()
    }

    fn has_hash(&self, node: Node) -> bool {
        self.tree.len() > node.index()
    }
}

impl<D, V> From<VecLog<D, V>> for protobuf::VecLog
where
    D: SupportedDigest,
    V: VisitBytes,
{
    fn from(value: VecLog<D, V>) -> Self {
        let tree = value
            .tree
            .into_iter()
            .map(|hash| hash.bytes().to_vec())
            .collect();
        protobuf::VecLog {
            length: value.length as u32,
            tree,
        }
    }
}

impl<D, V> TryFrom<protobuf::VecLog> for VecLog<D, V>
where
    D: SupportedDigest,
    V: VisitBytes,
{
    type Error = Error;

    fn try_from(value: protobuf::VecLog) -> Result<Self, Self::Error> {
        let length = value.length as usize;
        let mut tree = Vec::with_capacity(length);
        for entry in value.tree {
            tree.push(entry.try_into()?)
        }
        let vec_log = VecLog {
            length,
            tree,
            _value: PhantomData,
        };
        Ok(vec_log)
    }
}

#[cfg(test)]
mod tests {
    use warg_crypto::hash::Sha256;

    use crate::log::proof::InclusionProofError;

    use super::*;

    fn naive_merkle<D: SupportedDigest, E: VisitBytes>(elements: &[E]) -> Hash<D> {
        match elements.len() {
            0 => hash_empty::<D>(),
            1 => hash_leaf::<D>(&elements[0]),
            _ => {
                let k = elements.len().next_power_of_two() / 2;
                let left = naive_merkle::<D, E>(&elements[..k]);
                let right = naive_merkle::<D, E>(&elements[k..]);
                hash_branch::<D>(left, right)
            }
        }
    }

    #[test]
    fn test_log_modifications() {
        let data = [
            "93", "67", "30", "37", "23", "75", "57", "89", "76", "42", "9", "14", "40", "59",
            "26", "66", "77", "38", "47", "34", "8", "81", "101", "102", "103",
        ];

        let mut tree: VecLog<Sha256, &str> = VecLog::default();
        let mut roots = Vec::new();

        for i in 0..data.len() {
            tree.push(&data[i]);

            let naive_root = naive_merkle::<Sha256, _>(&data[..i + 1]);

            let tree_root = tree.checkpoint().root();
            assert_eq!(
                tree_root, naive_root,
                "at {}: (in-order) {:?} != (naive) {:?}",
                i, tree_root, naive_root
            );

            roots.push(tree_root);
        }

        // Check inclusion proofs
        for (i, _) in data.iter().enumerate() {
            let leaf_node = Node(i * 2);

            for (j, root) in roots.iter().enumerate() {
                let log_length = j + 1;
                let inc_proof = tree.prove_inclusion(leaf_node, log_length);
                let result = inc_proof.evaluate_value(&tree, &data[i]);
                if j >= i {
                    assert!(result.is_ok());
                    assert_eq!(root.clone(), result.unwrap());
                } else {
                    assert!(result.is_err());
                    assert_eq!(result.unwrap_err(), InclusionProofError::LeafTooNew);
                }
            }
        }

        // Check consistency proofs
        for (i, _) in data.iter().enumerate() {
            let old_length = i + 1;
            let old_root = tree.root_at(old_length).unwrap();

            for (j, new_root) in roots.iter().enumerate().skip(i) {
                let new_root = new_root.clone();
                let new_length = j + 1;

                let proof = tree.prove_consistency(old_length, new_length);
                let results = proof.evaluate(&tree).unwrap();
                let (found_old_root, found_new_root) = results;
                assert_eq!(old_root, found_old_root);
                assert_eq!(new_root, found_new_root);
            }
        }
    }
}