1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
//! Immutable Log w/ Inclusion and Consistency Proofs
//!
//! The main trait in this module is [`VerifiableLog`],
//! which defines the API of a log where inclusion
//! and consistency can be verified.
//!
//! Implementations:
//! * [`InOrderLog`] -
//! The only implementation in this module is ,
//! which is a [`VerifiableLog`] whose contents are structured
//! using binary in-order interval numbering as described in
//! [Dat - Distributed Dataset Synchronization and Versioning][2].
mod node;
/// Logic for constructing and validating proofs
mod proof;
mod proof_bundle;
mod sparse_data;
mod stack_log;
mod vec_log;
use warg_crypto::{
hash::{Hash, SupportedDigest},
VisitBytes,
};
pub use node::{Node, Side};
pub use proof::{
ConsistencyProof, ConsistencyProofError, InclusionProof, InclusionProofError,
InclusionProofWalk,
};
pub use proof_bundle::ProofBundle;
pub use proof_bundle::ProofBundle as LogProofBundle;
pub use stack_log::StackLog;
pub use vec_log::VecLog;
/// A [merkle tree][0] log data type based on [DAT][1].
/// where the merkle tree computation is conformant to
/// [RFC 6962 - Certificate Transparency][2]. This allows
/// you to efficiently append data and then verify that
/// it the log is consistent over time and contains a
/// given entry.
///
/// It represents its data using binary in-order interval numbering.
/// This means that all of the leaf and balanced branch nodes of the tree
/// are stored in one contiguous array using a particular indexing scheme.
///
/// ## Example
/// ```text
/// 0 X \
/// 1 X
/// 2 X / \
/// 3 X
/// 4 X \ /
/// 5 X
/// 6 X /
/// ```
///
/// ## Properties
/// This has various convenient properties for traversing the structure.
/// * The height of a node is the number of trailing ones in its index.
/// * For the above reason, leaves always have even indices.
/// * The side (left/right) of a node can be computed from its index.
/// * The distance between parent/child indices is a simple function of height.
///
/// [0]: https://en.wikipedia.org/wiki/Merkle_tree
/// [1]: https://www.researchgate.net/publication/326120012_Dat_-_Distributed_Dataset_Synchronization_And_Versioning
/// [2]: https://www.rfc-editor.org/rfc/rfc6962
pub trait LogBuilder<D, V>
where
D: SupportedDigest,
V: VisitBytes,
{
/// Get the checkpoint (hash and length) of the log at this point.
fn checkpoint(&self) -> Checkpoint<D>;
/// Push a new entry into the log.
fn push(&mut self, entry: &V) -> Node;
}
/// A point in the history of a log, represented by its length
#[derive(Debug, Clone, PartialOrd, Ord)]
pub struct Checkpoint<D>
where
D: SupportedDigest,
{
root: Hash<D>,
length: usize,
}
impl<D> Checkpoint<D>
where
D: SupportedDigest,
{
/// The root hash of the log at this checkpoint
pub fn root(&self) -> Hash<D> {
self.root.clone()
}
/// The length of the log at this checkpoint
pub fn length(&self) -> usize {
self.length
}
}
impl<D> Eq for Checkpoint<D> where D: SupportedDigest {}
impl<D> PartialEq for Checkpoint<D>
where
D: SupportedDigest,
{
fn eq(&self, other: &Self) -> bool {
self.root == other.root && self.length == other.length
}
}
/// A collection of hash data
pub trait LogData<D, V>
where
D: SupportedDigest,
V: VisitBytes,
{
/// Does this hash exist in the collection?
fn has_hash(&self, node: Node) -> bool;
/// Get the hash for a given node
/// None if node does not yet exist
fn hash_for(&self, node: Node) -> Option<Hash<D>>;
/// Construct an inclusion proof for this log
fn prove_inclusion(&self, leaf: Node, log_length: usize) -> InclusionProof<D, V> {
InclusionProof::new(leaf, log_length)
}
/// Construct a consistency proof for this log
fn prove_consistency(&self, old_length: usize, new_length: usize) -> ConsistencyProof<D, V> {
ConsistencyProof::new(old_length, new_length)
}
}
/// Compute the hash for an empty tree using a given Digest algorithm.
pub(crate) fn hash_empty<D: SupportedDigest>() -> Hash<D> {
Hash::of(())
}
/// Compute the hash for a leaf in a tree using a given Digest algorithm.
pub(crate) fn hash_leaf<D: SupportedDigest>(data: impl VisitBytes) -> Hash<D> {
let input = (0u8, data);
Hash::of(&input)
}
/// Compute the hash for a branch in a tree using a given Digest algorithm.
pub(crate) fn hash_branch<D: SupportedDigest>(
left: impl VisitBytes,
right: impl VisitBytes,
) -> Hash<D> {
let input = (1u8, left, right);
Hash::of(&input)
}