1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
use crate::value::{LittleEndian, Value};
use std::cmp::Ordering;
use std::convert::{TryFrom, TryInto};
use std::f32;
use std::f64;
use std::fmt;
use std::mem::size_of;
use wain_ast::{AsValType, ValType};

// Vec<Value> consumes too much space since its element size is always 64bits.
// To use space more efficiently, here use u32 for storing values as bytes.

#[derive(Default)]
pub struct Stack {
    bytes: Vec<u8>,      // Bytes buffer for actual values
    types: Vec<ValType>, // this stack is necessary to pop arbitrary value
}

pub trait StackAccess: Sized {
    fn pop(stack: &mut Stack) -> Self {
        let v = Self::top(stack);
        stack.erase_top(size_of::<Self>());
        v
    }
    fn push(stack: &mut Stack, v: Self);
    fn top(stack: &mut Stack) -> Self;
}

impl StackAccess for i32 {
    fn push(stack: &mut Stack, v: Self) {
        stack.push_bytes(&v.to_le_bytes(), ValType::I32);
    }
    fn top(stack: &mut Stack) -> Self {
        assert_eq!(stack.top_type(), ValType::I32);
        i32::from_le_bytes(stack.top_bytes())
    }
}

impl StackAccess for i64 {
    fn push(stack: &mut Stack, v: Self) {
        stack.push_bytes(&v.to_le_bytes(), ValType::I64);
    }
    fn top(stack: &mut Stack) -> Self {
        assert_eq!(stack.top_type(), ValType::I64);
        i64::from_le_bytes(stack.top_bytes())
    }
}

impl StackAccess for f32 {
    fn push(stack: &mut Stack, v: Self) {
        stack.push_bytes(&v.to_le_bytes(), ValType::F32);
    }
    fn top(stack: &mut Stack) -> Self {
        assert_eq!(stack.top_type(), ValType::F32);
        f32::from_le_bytes(stack.top_bytes())
    }
}

impl StackAccess for f64 {
    fn push(stack: &mut Stack, v: Self) {
        stack.push_bytes(&v.to_le_bytes(), ValType::F64);
    }
    fn top(stack: &mut Stack) -> Self {
        assert_eq!(stack.top_type(), ValType::F64);
        f64::from_le_bytes(stack.top_bytes())
    }
}

impl StackAccess for Value {
    fn pop(stack: &mut Stack) -> Self {
        match stack.types[stack.types.len() - 1] {
            ValType::I32 => Value::I32(StackAccess::pop(stack)),
            ValType::I64 => Value::I64(StackAccess::pop(stack)),
            ValType::F32 => Value::F32(StackAccess::pop(stack)),
            ValType::F64 => Value::F64(StackAccess::pop(stack)),
        }
    }
    fn push(stack: &mut Stack, v: Self) {
        match v {
            Value::I32(i) => StackAccess::push(stack, i),
            Value::I64(i) => StackAccess::push(stack, i),
            Value::F32(f) => StackAccess::push(stack, f),
            Value::F64(f) => StackAccess::push(stack, f),
        }
    }
    fn top(stack: &mut Stack) -> Self {
        match stack.types[stack.types.len() - 1] {
            ValType::I32 => Value::I32(StackAccess::top(stack)),
            ValType::I64 => Value::I64(StackAccess::top(stack)),
            ValType::F32 => Value::F32(StackAccess::top(stack)),
            ValType::F64 => Value::F64(StackAccess::top(stack)),
        }
    }
}

impl Stack {
    // Note: Here I don't use std::slice::from_raw since its unsafe

    fn top_type(&self) -> ValType {
        self.types[self.types.len() - 1]
    }

    fn push_bytes(&mut self, bytes: &[u8], ty: ValType) {
        self.types.push(ty);
        self.bytes.extend_from_slice(bytes);
    }

    pub fn push<V: StackAccess>(&mut self, v: V) {
        StackAccess::push(self, v);
    }

    fn top_bytes<'a, T>(&'a self) -> T
    where
        T: TryFrom<&'a [u8]>,
        T::Error: fmt::Debug,
    {
        let len = self.bytes.len() - size_of::<T>();
        self.bytes[len..].try_into().expect("top bytes")
    }

    fn erase_top(&mut self, len: usize) {
        self.types.pop();
        self.bytes.truncate(self.bytes.len() - len);
    }

    pub fn pop<V: StackAccess>(&mut self) -> V {
        StackAccess::pop(self)
    }

    pub fn top<V: StackAccess>(&mut self) -> V {
        StackAccess::top(self)
    }

    pub fn write_top_bytes<V: LittleEndian>(&mut self, v: V) {
        let addr = self.bytes.len() - size_of::<V>();
        LittleEndian::write(&mut self.bytes, addr, v);
    }

    pub fn write_top_type(&mut self, t: ValType) {
        let len = self.types.len() - 1;
        self.types[len] = t;
    }

    pub fn write_top<T: StackAccess, V: LittleEndian + AsValType>(&mut self, v: V) {
        // Expect optimizations by compiler since conditions of these if statements can be
        // calculated at compile time
        //
        // Note: The same value as size_of::<T>() can be obtained by self.top_type().bytes(), but
        // it's runtime value preventing compiler from optimization.
        match size_of::<T>().cmp(&size_of::<V>()) {
            Ordering::Equal => {}
            Ordering::Greater => {
                let len = self.bytes.len() - (size_of::<T>() - size_of::<V>());
                self.bytes.truncate(len);
            }
            Ordering::Less => {
                let len = self.bytes.len() + (size_of::<V>() - size_of::<T>());
                self.bytes.resize(len, 0);
            }
        }
        self.write_top_bytes(v);
        self.write_top_type(V::VAL_TYPE);
    }

    pub fn write<V: LittleEndian>(&mut self, addr: usize, v: V) {
        LittleEndian::write(&mut self.bytes, addr, v);
    }

    pub fn read<V: LittleEndian>(&self, addr: usize) -> V {
        LittleEndian::read(&self.bytes, addr)
    }

    pub fn write_any(&mut self, addr: usize, v: Value) {
        match v {
            Value::I32(i) => self.write(addr, i),
            Value::I64(i) => self.write(addr, i),
            Value::F32(f) => self.write(addr, f),
            Value::F64(f) => self.write(addr, f),
        }
    }

    fn top_addr(&self) -> usize {
        self.bytes.len()
    }

    fn top_idx(&self) -> usize {
        self.types.len()
    }

    pub fn restore(&mut self, addr: usize, type_idx: usize) {
        self.bytes.truncate(addr);
        self.types.truncate(type_idx);
    }

    pub fn push_label(&self, ty: Option<ValType>) -> Label {
        Label {
            addr: self.top_addr(),
            type_idx: self.top_idx(),
            has_result: ty.is_some(),
        }
    }

    pub fn pop_label(&mut self, label: Label) {
        // Part of 'br' instruction: https://webassembly.github.io/spec/core/exec/instructions.html#exec-br
        if label.has_result {
            let v: Value = self.pop();
            self.restore(label.addr, label.type_idx);
            self.push(v);
        } else {
            self.restore(label.addr, label.type_idx);
        }
    }

    pub fn extend_zero_values(&mut self, types: &[ValType]) {
        self.types.extend_from_slice(types);
        let bytes = types.iter().fold(0, |acc, t| acc + t.bytes());
        self.bytes.resize(self.bytes.len() + bytes, 0);
    }
}

// Activations of function frames
// This class is outside Machine because it has shorter lifetime. It only lives while the current
// function is being invoked
pub struct CallFrame<'func> {
    pub base_addr: usize,
    pub base_idx: usize,
    local_addrs: Box<[usize]>, // Calculate local addresses in advance for random access
    params: &'func [ValType],
    locals: &'func [ValType],
}

impl<'f> CallFrame<'f> {
    pub fn new(stack: &Stack, params: &'f [ValType], locals: &'f [ValType]) -> Self {
        let mut addrs = Vec::with_capacity(params.len() + locals.len());

        // Note: Params were already pushed to stack
        let params_bytes = params.iter().fold(0, |acc, p| acc + p.bytes());
        let base_addr = stack.top_addr() - params_bytes;
        let base_idx = stack.top_idx() - params.len();

        let mut addr = 0;
        for p in params {
            addrs.push(base_addr + addr);
            addr += p.bytes();
        }
        for l in locals {
            addrs.push(base_addr + addr);
            addr += l.bytes();
        }

        Self {
            base_addr,
            base_idx,
            local_addrs: addrs.into_boxed_slice(),
            params,
            locals,
        }
    }

    pub fn local_addr(&self, localidx: u32) -> usize {
        self.local_addrs[localidx as usize]
    }

    pub fn local_type(&self, localidx: u32) -> ValType {
        let idx = localidx as usize;
        if idx < self.params.len() {
            self.params[idx]
        } else if idx < self.params.len() + self.locals.len() {
            self.locals[idx - self.params.len()]
        } else {
            // Unreachable thanks to validation
            unreachable!("local type out of bounds")
        }
    }
}

pub struct Label {
    addr: usize,
    type_idx: usize,
    has_result: bool,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn i32_value() {
        let mut s = Stack::default();
        s.push(0i32);
        assert_eq!(s.top::<i32>(), 0);
        s.push(1i32);
        s.push(-1i32);
        s.push(i32::MAX);
        s.push(i32::MIN);

        assert_eq!(s.pop::<i32>(), i32::MIN);
        assert_eq!(s.pop::<i32>(), i32::MAX);
        assert_eq!(s.pop::<i32>(), -1);
        assert_eq!(s.pop::<i32>(), 1);
        assert_eq!(s.pop::<i32>(), 0);
    }

    #[test]
    fn i64_value() {
        let mut s = Stack::default();
        s.push(0i64);
        s.push(1i64);
        s.push(-1i64);
        s.push(i32::MAX as i64);
        s.push(i32::MIN as i64);
        s.push(i64::MAX);
        s.push(i64::MIN);

        assert_eq!(s.pop::<i64>(), i64::MIN);
        assert_eq!(s.pop::<i64>(), i64::MAX);
        assert_eq!(s.pop::<i64>(), i32::MIN as i64);
        assert_eq!(s.pop::<i64>(), i32::MAX as i64);
        assert_eq!(s.pop::<i64>(), -1);
        assert_eq!(s.pop::<i64>(), 1);
        assert_eq!(s.pop::<i64>(), 0);
    }

    #[test]
    fn f32_value() {
        let mut s = Stack::default();
        s.push(0.0f32);
        assert_eq!(s.top::<f32>(), 0.0);
        s.push(3.14f32);
        s.push(-1.0f32);
        s.push(f32::INFINITY);
        s.push(f32::NEG_INFINITY);
        s.push(f32::NAN);

        assert!(s.pop::<f32>().is_nan());
        assert_eq!(s.pop::<f32>(), f32::NEG_INFINITY);
        assert_eq!(s.pop::<f32>(), f32::INFINITY);
        assert_eq!(s.pop::<f32>(), -1.0);
        assert_eq!(s.pop::<f32>(), 3.14);
        assert_eq!(s.pop::<f32>(), 0.0);
    }

    #[test]
    fn f64_value() {
        let mut s = Stack::default();
        s.push(0.0f64);
        assert_eq!(s.top::<f64>(), 0.0f64);
        s.push(3.14f64);
        s.push(-1.0f64);
        s.push(f64::INFINITY);
        s.push(f64::NEG_INFINITY);
        s.push(f64::NAN);

        assert!(s.pop::<f64>().is_nan());
        assert_eq!(s.pop::<f64>(), f64::NEG_INFINITY);
        assert_eq!(s.pop::<f64>(), f64::INFINITY);
        assert_eq!(s.pop::<f64>(), -1.0);
        assert_eq!(s.pop::<f64>(), 3.14);
        assert_eq!(s.pop::<f64>(), 0.0);
    }

    #[test]
    fn any_value() {
        let i32_s = [0, 1, -1, i32::MAX, i32::MIN];
        let i64_s = [
            0,
            1,
            -1,
            i32::MAX as i64,
            i32::MIN as i64,
            i64::MAX,
            i64::MIN,
        ];
        let f32_s = [0.0, 3.14, -1.0, f32::INFINITY, f32::NEG_INFINITY, f32::NAN];
        let f64_s = [0.0, 3.14, -1.0, f64::INFINITY, f64::NEG_INFINITY, f64::NAN];

        let mut s = Stack::default();
        for (((i32v, i64v), f32v), f64v) in i32_s
            .iter()
            .cycle()
            .zip(i64_s.iter().cycle())
            .zip(f32_s.iter().cycle())
            .zip(f64_s.iter().cycle())
            .take(100)
        {
            s.push(*i32v);
            s.push(*i64v);
            s.push(*f32v);
            s.push(*f64v);
        }

        for (((i32v, i64v), f32v), f64v) in i32_s
            .iter()
            .cycle()
            .zip(i64_s.iter().cycle())
            .zip(f32_s.iter().cycle())
            .zip(f64_s.iter().cycle())
            .take(100)
            .collect::<Vec<_>>()
            .into_iter()
            .rev()
        {
            if f64v.is_nan() {
                match s.pop() {
                    Value::F64(v) => assert!(v.is_nan()),
                    v => panic!("not match: {:?}", v),
                }
            } else {
                assert_eq!(s.top::<Value>(), Value::F64(*f64v));
                assert_eq!(s.pop::<Value>(), Value::F64(*f64v));
            }
            if f32v.is_nan() {
                match s.pop() {
                    Value::F32(v) => assert!(v.is_nan()),
                    v => panic!("not match: {:?}", v),
                }
            } else {
                assert_eq!(s.top::<Value>(), Value::F32(*f32v));
                assert_eq!(s.pop::<Value>(), Value::F32(*f32v));
            }
            assert_eq!(s.top::<Value>(), Value::I64(*i64v));
            assert_eq!(s.pop::<Value>(), Value::I64(*i64v));
            assert_eq!(s.top::<Value>(), Value::I32(*i32v));
            assert_eq!(s.pop::<Value>(), Value::I32(*i32v));
        }
    }
}