1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
use {
    crate::{invoke_context::InvokeContext, timings::ExecuteDetailsTimings},
    solana_measure::measure::Measure,
    solana_rbpf::{
        elf::Executable,
        error::EbpfError,
        verifier::RequisiteVerifier,
        vm::{BuiltInProgram, VerifiedExecutable},
    },
    solana_sdk::{
        bpf_loader, bpf_loader_deprecated, bpf_loader_upgradeable, clock::Slot, pubkey::Pubkey,
        saturating_add_assign,
    },
    std::{
        collections::HashMap,
        fmt::{Debug, Formatter},
        sync::{atomic::AtomicU64, Arc},
    },
};

/// Relationship between two fork IDs
#[derive(Copy, Clone, PartialEq)]
pub enum BlockRelation {
    /// The slot is on the same fork and is an ancestor of the other slot
    Ancestor,
    /// The two slots are equal and are on the same fork
    Equal,
    /// The slot is on the same fork and is a descendant of the other slot
    Descendant,
    /// The slots are on two different forks and may have had a common ancestor at some point
    Unrelated,
    /// Either one or both of the slots are either older than the latest root, or are in future
    Unknown,
}

/// Maps relationship between two slots.
pub trait ForkGraph {
    /// Returns the BlockRelation of A to B
    fn relationship(&self, a: Slot, b: Slot) -> BlockRelation;
}

/// Provides information about current working slot, and its ancestors
pub trait WorkingSlot {
    /// Returns the current slot value
    fn current_slot(&self) -> Slot;

    /// Returns true if the `other` slot is an ancestor of self, false otherwise
    fn is_ancestor(&self, other: Slot) -> bool;
}

#[derive(Default)]
pub enum LoadedProgramType {
    /// Tombstone for undeployed, closed or unloadable programs
    #[default]
    Invalid,
    LegacyV0(VerifiedExecutable<RequisiteVerifier, InvokeContext<'static>>),
    LegacyV1(VerifiedExecutable<RequisiteVerifier, InvokeContext<'static>>),
    // Typed(TypedProgram<InvokeContext<'static>>),
    BuiltIn(BuiltInProgram<InvokeContext<'static>>),
}

impl Debug for LoadedProgramType {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            LoadedProgramType::Invalid => write!(f, "LoadedProgramType::Invalid"),
            LoadedProgramType::LegacyV0(_) => write!(f, "LoadedProgramType::LegacyV0"),
            LoadedProgramType::LegacyV1(_) => write!(f, "LoadedProgramType::LegacyV1"),
            LoadedProgramType::BuiltIn(_) => write!(f, "LoadedProgramType::BuiltIn"),
        }
    }
}

#[derive(Debug, Default)]
pub struct LoadedProgram {
    /// The program of this entry
    pub program: LoadedProgramType,
    /// Size of account that stores the program and program data
    pub account_size: usize,
    /// Slot in which the program was (re)deployed
    pub deployment_slot: Slot,
    /// Slot in which this entry will become active (can be in the future)
    pub effective_slot: Slot,
    /// How often this entry was used
    pub usage_counter: AtomicU64,
}

#[derive(Debug, Default)]
pub struct LoadProgramMetrics {
    pub program_id: String,
    pub register_syscalls_us: u64,
    pub load_elf_us: u64,
    pub verify_code_us: u64,
    pub jit_compile_us: u64,
}

impl LoadProgramMetrics {
    pub fn submit_datapoint(&self, timings: &mut ExecuteDetailsTimings) {
        saturating_add_assign!(
            timings.create_executor_register_syscalls_us,
            self.register_syscalls_us
        );
        saturating_add_assign!(timings.create_executor_load_elf_us, self.load_elf_us);
        saturating_add_assign!(timings.create_executor_verify_code_us, self.verify_code_us);
        saturating_add_assign!(timings.create_executor_jit_compile_us, self.jit_compile_us);
        datapoint_trace!(
            "create_executor_trace",
            ("program_id", self.program_id, String),
            ("register_syscalls_us", self.register_syscalls_us, i64),
            ("load_elf_us", self.load_elf_us, i64),
            ("verify_code_us", self.verify_code_us, i64),
            ("jit_compile_us", self.jit_compile_us, i64),
        );
    }
}

impl LoadedProgram {
    /// Creates a new user program
    pub fn new(
        loader_key: &Pubkey,
        loader: Arc<BuiltInProgram<InvokeContext<'static>>>,
        deployment_slot: Slot,
        elf_bytes: &[u8],
        account_size: usize,
        use_jit: bool,
        metrics: &mut LoadProgramMetrics,
    ) -> Result<Self, EbpfError> {
        let mut load_elf_time = Measure::start("load_elf_time");
        let executable = Executable::load(elf_bytes, loader.clone())?;
        load_elf_time.stop();
        metrics.load_elf_us = load_elf_time.as_us();

        let mut verify_code_time = Measure::start("verify_code_time");

        // Allowing mut here, since it may be needed for jit compile, which is under a config flag
        #[allow(unused_mut)]
        let mut program = if bpf_loader_deprecated::check_id(loader_key) {
            LoadedProgramType::LegacyV0(VerifiedExecutable::from_executable(executable)?)
        } else if bpf_loader::check_id(loader_key) || bpf_loader_upgradeable::check_id(loader_key) {
            LoadedProgramType::LegacyV1(VerifiedExecutable::from_executable(executable)?)
        } else {
            panic!();
        };
        verify_code_time.stop();
        metrics.verify_code_us = verify_code_time.as_us();

        if use_jit {
            #[cfg(all(not(target_os = "windows"), target_arch = "x86_64"))]
            {
                let mut jit_compile_time = Measure::start("jit_compile_time");
                match &mut program {
                    LoadedProgramType::LegacyV0(executable) => executable.jit_compile(),
                    LoadedProgramType::LegacyV1(executable) => executable.jit_compile(),
                    _ => Err(EbpfError::JitNotCompiled),
                }?;
                jit_compile_time.stop();
                metrics.jit_compile_us = jit_compile_time.as_us();
            }
        }

        Ok(Self {
            deployment_slot,
            account_size,
            effective_slot: deployment_slot.saturating_add(1),
            usage_counter: AtomicU64::new(0),
            program,
        })
    }

    /// Creates a new built-in program
    pub fn new_built_in(
        deployment_slot: Slot,
        program: BuiltInProgram<InvokeContext<'static>>,
    ) -> Self {
        Self {
            deployment_slot,
            account_size: 0,
            effective_slot: deployment_slot.saturating_add(1),
            usage_counter: AtomicU64::new(0),
            program: LoadedProgramType::BuiltIn(program),
        }
    }

    pub fn new_tombstone() -> Self {
        Self {
            program: LoadedProgramType::Invalid,
            account_size: 0,
            deployment_slot: 0,
            effective_slot: 0,
            usage_counter: AtomicU64::default(),
        }
    }

    pub fn is_tombstone(&self) -> bool {
        matches!(self.program, LoadedProgramType::Invalid)
    }
}

#[derive(Debug, Default)]
pub struct LoadedPrograms {
    /// A two level index:
    ///
    /// Pubkey is the address of a program, multiple versions can coexists simultaneously under the same address (in different slots).
    entries: HashMap<Pubkey, Vec<Arc<LoadedProgram>>>,
}

#[cfg(RUSTC_WITH_SPECIALIZATION)]
impl solana_frozen_abi::abi_example::AbiExample for LoadedPrograms {
    fn example() -> Self {
        // Delegate AbiExample impl to Default before going deep and stuck with
        // not easily impl-able Arc<dyn Executor> due to rust's coherence issue
        // This is safe because LoadedPrograms isn't serializable by definition.
        Self::default()
    }
}

pub enum LoadedProgramEntry {
    WasOccupied(Arc<LoadedProgram>),
    WasVacant(Arc<LoadedProgram>),
}

impl LoadedPrograms {
    /// Inserts a single entry
    pub fn insert_entry(&mut self, key: Pubkey, entry: LoadedProgram) -> LoadedProgramEntry {
        let second_level = self.entries.entry(key).or_insert_with(Vec::new);
        let index = second_level
            .iter()
            .position(|at| at.effective_slot >= entry.effective_slot);
        if let Some(index) = index {
            let existing = second_level
                .get(index)
                .expect("Missing entry, even though position was found");
            if existing.deployment_slot == entry.deployment_slot
                && existing.effective_slot == entry.effective_slot
            {
                return LoadedProgramEntry::WasOccupied(existing.clone());
            }
        }
        let new_entry = Arc::new(entry);
        second_level.insert(index.unwrap_or(second_level.len()), new_entry.clone());
        LoadedProgramEntry::WasVacant(new_entry)
    }

    /// Before rerooting the blockstore this removes all programs of orphan forks
    pub fn prune<F: ForkGraph>(&mut self, fork_graph: &F, new_root: Slot) {
        self.entries.retain(|_key, second_level| {
            let mut first_ancestor = true;
            *second_level = second_level
                .iter()
                .rev()
                .filter(|entry| {
                    let relation = fork_graph.relationship(entry.deployment_slot, new_root);
                    if entry.deployment_slot >= new_root {
                        matches!(relation, BlockRelation::Equal | BlockRelation::Descendant)
                    } else if first_ancestor {
                        first_ancestor = false;
                        matches!(relation, BlockRelation::Ancestor)
                    } else {
                        false
                    }
                })
                .cloned()
                .collect();
            second_level.reverse();
            !second_level.is_empty()
        });
    }

    /// Extracts a subset of the programs relevant to a transaction batch
    /// and returns which program accounts the accounts DB needs to load.
    pub fn extract<S: WorkingSlot>(
        &self,
        working_slot: &S,
        keys: impl Iterator<Item = Pubkey>,
    ) -> (HashMap<Pubkey, Arc<LoadedProgram>>, Vec<Pubkey>) {
        let mut missing = Vec::new();
        let found = keys
            .filter_map(|key| {
                if let Some(second_level) = self.entries.get(&key) {
                    for entry in second_level.iter().rev() {
                        if working_slot.current_slot() >= entry.effective_slot
                            && working_slot.is_ancestor(entry.deployment_slot)
                        {
                            return Some((key, entry.clone()));
                        }
                    }
                }
                missing.push(key);
                None
            })
            .collect();
        (found, missing)
    }

    /// Evicts programs which were used infrequently
    pub fn sort_and_evict(&mut self) {
        // TODO: Sort programs by their usage_counter
        // TODO: Truncate the end of the list
    }

    /// Removes the entries at the given keys, if they exist
    pub fn remove_entries(&mut self, _key: impl Iterator<Item = Pubkey>) {
        // TODO: Remove at primary index level
    }
}

#[cfg(test)]
mod tests {
    use {
        crate::loaded_programs::{
            BlockRelation, ForkGraph, LoadedProgram, LoadedProgramEntry, LoadedProgramType,
            LoadedPrograms, WorkingSlot,
        },
        solana_sdk::{clock::Slot, pubkey::Pubkey},
        std::{
            collections::HashMap,
            ops::ControlFlow,
            sync::{atomic::AtomicU64, Arc},
        },
    };

    #[test]
    fn test_tombstone() {
        let tombstone = LoadedProgram::new_tombstone();
        assert!(matches!(tombstone.program, LoadedProgramType::Invalid));
        assert!(tombstone.is_tombstone());
    }

    struct TestForkGraph {
        relation: BlockRelation,
    }
    impl ForkGraph for TestForkGraph {
        fn relationship(&self, _a: Slot, _b: Slot) -> BlockRelation {
            self.relation
        }
    }

    #[test]
    fn test_prune_empty() {
        let mut cache = LoadedPrograms::default();
        let fork_graph = TestForkGraph {
            relation: BlockRelation::Unrelated,
        };

        cache.prune(&fork_graph, 0);
        assert!(cache.entries.is_empty());

        cache.prune(&fork_graph, 10);
        assert!(cache.entries.is_empty());

        let fork_graph = TestForkGraph {
            relation: BlockRelation::Ancestor,
        };

        cache.prune(&fork_graph, 0);
        assert!(cache.entries.is_empty());

        cache.prune(&fork_graph, 10);
        assert!(cache.entries.is_empty());

        let fork_graph = TestForkGraph {
            relation: BlockRelation::Descendant,
        };

        cache.prune(&fork_graph, 0);
        assert!(cache.entries.is_empty());

        cache.prune(&fork_graph, 10);
        assert!(cache.entries.is_empty());

        let fork_graph = TestForkGraph {
            relation: BlockRelation::Unknown,
        };

        cache.prune(&fork_graph, 0);
        assert!(cache.entries.is_empty());

        cache.prune(&fork_graph, 10);
        assert!(cache.entries.is_empty());
    }

    #[derive(Default)]
    struct TestForkGraphSpecific {
        forks: Vec<Vec<Slot>>,
    }

    impl TestForkGraphSpecific {
        fn insert_fork(&mut self, fork: &[Slot]) {
            let mut fork = fork.to_vec();
            fork.sort();
            self.forks.push(fork)
        }
    }

    impl ForkGraph for TestForkGraphSpecific {
        fn relationship(&self, a: Slot, b: Slot) -> BlockRelation {
            match self.forks.iter().try_for_each(|fork| {
                let relation = fork
                    .iter()
                    .position(|x| *x == a)
                    .and_then(|a_pos| {
                        fork.iter().position(|x| *x == b).and_then(|b_pos| {
                            (a_pos == b_pos)
                                .then_some(BlockRelation::Equal)
                                .or_else(|| (a_pos < b_pos).then_some(BlockRelation::Ancestor))
                                .or(Some(BlockRelation::Descendant))
                        })
                    })
                    .unwrap_or(BlockRelation::Unrelated);

                if relation != BlockRelation::Unrelated {
                    return ControlFlow::Break(relation);
                }

                ControlFlow::Continue(())
            }) {
                ControlFlow::Break(relation) => relation,
                _ => BlockRelation::Unrelated,
            }
        }
    }

    struct TestWorkingSlot {
        slot: Slot,
        fork: Vec<Slot>,
        slot_pos: usize,
    }

    impl TestWorkingSlot {
        fn new(slot: Slot, fork: &[Slot]) -> Self {
            let mut fork = fork.to_vec();
            fork.sort();
            let slot_pos = fork
                .iter()
                .position(|current| *current == slot)
                .expect("The fork didn't have the slot in it");
            TestWorkingSlot {
                slot,
                fork,
                slot_pos,
            }
        }

        fn update_slot(&mut self, slot: Slot) {
            self.slot = slot;
            self.slot_pos = self
                .fork
                .iter()
                .position(|current| *current == slot)
                .expect("The fork didn't have the slot in it");
        }
    }

    impl WorkingSlot for TestWorkingSlot {
        fn current_slot(&self) -> Slot {
            self.slot
        }

        fn is_ancestor(&self, other: Slot) -> bool {
            self.fork
                .iter()
                .position(|current| *current == other)
                .map(|other_pos| other_pos < self.slot_pos)
                .unwrap_or(false)
        }
    }

    fn new_test_loaded_program(deployment_slot: Slot, effective_slot: Slot) -> LoadedProgram {
        LoadedProgram {
            program: LoadedProgramType::Invalid,
            account_size: 0,
            deployment_slot,
            effective_slot,
            usage_counter: AtomicU64::default(),
        }
    }

    fn match_slot(
        table: &HashMap<Pubkey, Arc<LoadedProgram>>,
        program: &Pubkey,
        deployment_slot: Slot,
    ) -> bool {
        table
            .get(program)
            .map(|entry| entry.deployment_slot == deployment_slot)
            .unwrap_or(false)
    }

    #[test]
    fn test_fork_extract_and_prune() {
        let mut cache = LoadedPrograms::default();

        // Fork graph created for the test
        //                   0
        //                 /   \
        //                10    5
        //                |     |
        //                20    11
        //                |     | \
        //                22   15  25
        //                      |   |
        //                     16  27
        //                      |
        //                     19
        //                      |
        //                     23

        let mut fork_graph = TestForkGraphSpecific::default();
        fork_graph.insert_fork(&[0, 10, 20, 22]);
        fork_graph.insert_fork(&[0, 5, 11, 15, 16]);
        fork_graph.insert_fork(&[0, 5, 11, 25, 27]);

        let program1 = Pubkey::new_unique();
        assert!(matches!(
            cache.insert_entry(program1, new_test_loaded_program(0, 1)),
            LoadedProgramEntry::WasVacant(_)
        ));
        assert!(matches!(
            cache.insert_entry(program1, new_test_loaded_program(10, 11)),
            LoadedProgramEntry::WasVacant(_)
        ));
        assert!(matches!(
            cache.insert_entry(program1, new_test_loaded_program(20, 21)),
            LoadedProgramEntry::WasVacant(_)
        ));

        // Test: inserting duplicate entry return pre existing entry from the cache
        assert!(matches!(
            cache.insert_entry(program1, new_test_loaded_program(20, 21)),
            LoadedProgramEntry::WasOccupied(_)
        ));

        let program2 = Pubkey::new_unique();
        assert!(matches!(
            cache.insert_entry(program2, new_test_loaded_program(5, 6)),
            LoadedProgramEntry::WasVacant(_)
        ));
        assert!(matches!(
            cache.insert_entry(program2, new_test_loaded_program(11, 12)),
            LoadedProgramEntry::WasVacant(_)
        ));

        let program3 = Pubkey::new_unique();
        assert!(matches!(
            cache.insert_entry(program3, new_test_loaded_program(25, 26)),
            LoadedProgramEntry::WasVacant(_)
        ));

        let program4 = Pubkey::new_unique();
        assert!(matches!(
            cache.insert_entry(program4, new_test_loaded_program(0, 1)),
            LoadedProgramEntry::WasVacant(_)
        ));
        assert!(matches!(
            cache.insert_entry(program4, new_test_loaded_program(5, 6)),
            LoadedProgramEntry::WasVacant(_)
        ));
        // The following is a special case, where effective slot is 4 slots in the future
        assert!(matches!(
            cache.insert_entry(program4, new_test_loaded_program(15, 19)),
            LoadedProgramEntry::WasVacant(_)
        ));

        // Current fork graph
        //                   0
        //                 /   \
        //                10    5
        //                |     |
        //                20    11
        //                |     | \
        //                22   15  25
        //                      |   |
        //                     16  27
        //                      |
        //                     19
        //                      |
        //                     23

        // Testing fork 0 - 10 - 12 - 22 with current slot at 22
        let working_slot = TestWorkingSlot::new(22, &[0, 10, 20, 22]);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 20));
        assert!(match_slot(&found, &program4, 0));

        assert!(missing.contains(&program2));
        assert!(missing.contains(&program3));

        // Testing fork 0 - 5 - 11 - 15 - 16 with current slot at 16
        let mut working_slot = TestWorkingSlot::new(16, &[0, 5, 11, 15, 16, 19, 23]);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program2, 11));

        // The effective slot of program4 deployed in slot 15 is 19. So it should not be usable in slot 16.
        assert!(match_slot(&found, &program4, 5));

        assert!(missing.contains(&program3));

        // Testing the same fork above, but current slot is now 19 (equal to effective slot of program4).
        working_slot.update_slot(19);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program2, 11));

        // The effective slot of program4 deployed in slot 15 is 19. So it should be usable in slot 19.
        assert!(match_slot(&found, &program4, 15));

        assert!(missing.contains(&program3));

        // Testing the same fork above, but current slot is now 23 (future slot than effective slot of program4).
        working_slot.update_slot(23);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program2, 11));

        // The effective slot of program4 deployed in slot 15 is 19. So it should be usable in slot 23.
        assert!(match_slot(&found, &program4, 15));

        assert!(missing.contains(&program3));

        // Testing fork 0 - 5 - 11 - 15 - 16 with current slot at 11
        let working_slot = TestWorkingSlot::new(11, &[0, 5, 11, 15, 16]);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program2, 5));
        assert!(match_slot(&found, &program4, 5));

        assert!(missing.contains(&program3));

        cache.prune(&fork_graph, 5);

        // Fork graph after pruning
        //                   0
        //                   |
        //                   5
        //                   |
        //                   11
        //                   | \
        //                  15  25
        //                   |   |
        //                  16  27
        //                   |
        //                  19
        //                   |
        //                  23

        // Testing fork 0 - 10 - 12 - 22 (which was pruned) with current slot at 22
        let working_slot = TestWorkingSlot::new(22, &[0, 10, 20, 22]);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        // Since the fork was pruned, we should not find the entry deployed at slot 20.
        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program4, 0));

        assert!(missing.contains(&program2));
        assert!(missing.contains(&program3));

        // Testing fork 0 - 5 - 11 - 25 - 27 with current slot at 27
        let working_slot = TestWorkingSlot::new(27, &[0, 5, 11, 25, 27]);
        let (found, _missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program2, 11));
        assert!(match_slot(&found, &program3, 25));
        assert!(match_slot(&found, &program4, 5));

        cache.prune(&fork_graph, 15);

        // Fork graph after pruning
        //                  0
        //                  |
        //                  5
        //                  |
        //                  11
        //                  |
        //                  15
        //                  |
        //                  16
        //                  |
        //                  19
        //                  |
        //                  23

        // Testing fork 0 - 5 - 11 - 25 - 27 (with root at 15, slot 25, 27 are pruned) with current slot at 27
        let working_slot = TestWorkingSlot::new(27, &[0, 5, 11, 25, 27]);
        let (found, missing) = cache.extract(
            &working_slot,
            vec![program1, program2, program3, program4].into_iter(),
        );

        assert!(match_slot(&found, &program1, 0));
        assert!(match_slot(&found, &program2, 11));
        assert!(match_slot(&found, &program4, 5));

        // program3 was deployed on slot 25, which has been pruned
        assert!(missing.contains(&program3));
    }
}