1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use crate::util::bytes_to_group;
use crate::{bytes_to_field, Error, Polynomial, Share};
use core::{
mem::MaybeUninit,
ops::{AddAssign, Mul},
};
use elliptic_curve::{
ff::PrimeField,
group::{Group, GroupEncoding, ScalarMul},
};
use rand_core::{CryptoRng, RngCore};
#[derive(Copy, Clone, Debug)]
pub struct Shamir<const T: usize, const N: usize>;
impl<const T: usize, const N: usize> Shamir<T, N> {
pub fn split_secret<F, R, const S: usize>(
secret: F,
rng: &mut R,
) -> Result<[Share<S>; N], Error>
where
F: PrimeField,
R: RngCore + CryptoRng,
{
Self::check_params(Some(secret))?;
let (shares, _) = Self::get_shares_and_polynomial(secret, rng);
Ok(shares)
}
pub fn combine_shares<F, const S: usize>(shares: &[Share<S>]) -> Result<F, Error>
where
F: PrimeField,
{
Self::combine::<F, F, S>(shares, bytes_to_field)
}
pub fn combine_shares_group<F, G, const S: usize>(shares: &[Share<S>]) -> Result<G, Error>
where
F: PrimeField,
G: Group + GroupEncoding + ScalarMul<F> + Default,
{
Self::combine::<F, G, S>(shares, bytes_to_group)
}
fn combine<F, S, const SS: usize>(
shares: &[Share<SS>],
f: fn(&[u8]) -> Option<S>,
) -> Result<S, Error>
where
F: PrimeField,
S: Default + Copy + AddAssign + Mul<F, Output = S>,
{
Self::check_params::<F>(None)?;
if shares.len() < T {
return Err(Error::SharingMinThreshold);
}
let mut dups = [false; N];
let mut x_coordinates = [F::default(); T];
let mut y_coordinates = [S::default(); T];
for (i, s) in shares.iter().enumerate().take(T) {
let identifier = s.identifier();
if identifier == 0 {
return Err(Error::SharingInvalidIdentifier);
}
if dups[identifier as usize - 1] {
return Err(Error::SharingDuplicateIdentifier);
}
if s.is_zero() {
return Err(Error::InvalidShare);
}
dups[identifier as usize - 1] = true;
let y = f(s.value());
if y.is_none() {
return Err(Error::InvalidShare);
}
x_coordinates[i] = F::from(identifier as u64);
y_coordinates[i] = y.unwrap();
}
let secret = Self::interpolate(&x_coordinates, &y_coordinates);
Ok(secret)
}
pub(crate) fn get_shares_and_polynomial<F, R, const S: usize>(
secret: F,
rng: &mut R,
) -> ([Share<S>; N], Polynomial<F, T>)
where
F: PrimeField,
R: RngCore + CryptoRng,
{
let polynomial = Polynomial::<F, T>::new(secret, rng);
let mut shares: MaybeUninit<[Share<S>; N]> = MaybeUninit::uninit();
let mut x = F::one();
for i in 0..N {
let y = polynomial.evaluate(x);
let mut t = [0u8; S];
t[0] = (i + 1) as u8;
t[1..].copy_from_slice(y.to_repr().as_ref());
let p = (shares.as_mut_ptr() as *mut Share<S>).wrapping_add(i);
unsafe { core::ptr::write(p, Share(t)) };
x += F::one();
}
let shares = unsafe { shares.assume_init() };
(shares, polynomial)
}
fn interpolate<F, S>(x_coordinates: &[F], y_coordinates: &[S]) -> S
where
F: PrimeField,
S: Default + Copy + AddAssign + Mul<F, Output = S>,
{
let limit = x_coordinates.len();
let mut result = S::default();
for i in 0..limit {
let mut basis = F::one();
for j in 0..limit {
if i == j {
continue;
}
let mut denom: F = x_coordinates[j] - x_coordinates[i];
denom = denom.invert().unwrap();
basis *= x_coordinates[j] * denom;
}
result += y_coordinates[i] * basis;
}
result
}
pub(crate) fn check_params<F>(secret: Option<F>) -> Result<(), Error>
where
F: PrimeField,
{
if N < T {
return Err(Error::SharingLimitLessThanThreshold);
}
if T < 2 {
return Err(Error::SharingMinThreshold);
}
if N > 255 {
return Err(Error::SharingMaxRequest);
}
if secret.is_some() && secret.unwrap().is_zero().unwrap_u8() == 1u8 {
return Err(Error::InvalidShare);
}
Ok(())
}
}