1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#[cfg(test)]
#[path = "../../tests/unit/solver/population/population_test.rs"]
mod population_test;
use crate::algorithms::nsga2::{select_and_rank, Objective};
use crate::models::Problem;
use crate::solver::{Individual, Population, SOLUTION_ORDER_KEY};
use crate::utils::compare_floats;
use std::cmp::Ordering;
use std::sync::Arc;
pub struct DominancePopulation {
problem: Arc<Problem>,
max_population_size: usize,
individuals: Vec<Individual>,
}
#[derive(Clone, Debug)]
struct DominanceOrder {
orig_index: usize,
seq_index: usize,
rank: usize,
crowding_distance: f64,
}
impl DominancePopulation {
pub fn new(problem: Arc<Problem>, max_population_size: usize) -> Self {
assert!(max_population_size > 0);
Self { problem, max_population_size, individuals: vec![] }
}
}
impl Population for DominancePopulation {
fn add_all(&mut self, individuals: Vec<Individual>) {
individuals.into_iter().for_each(|individual| {
self.individuals.push(individual);
});
self.sort();
self.ensure_max_population_size();
}
fn add(&mut self, individual: Individual) {
self.individuals.push(individual);
self.sort();
self.ensure_max_population_size();
}
fn nth(&self, idx: usize) -> Option<&Individual> {
self.individuals.get(idx)
}
fn cmp(&self, a: &Individual, b: &Individual) -> Ordering {
self.problem.objective.total_order(a, b)
}
fn ranked<'a>(&'a self) -> Box<dyn Iterator<Item = (&Individual, usize)> + 'a> {
Box::new(self.individuals.iter().map(|individual| (individual, Self::gen_dominance_order(individual).rank)))
}
fn size(&self) -> usize {
self.individuals.len()
}
}
impl DominancePopulation {
fn sort(&mut self) {
let objective = self.problem.objective.clone();
let best_order = select_and_rank(self.individuals.as_slice(), self.individuals.len(), objective.as_ref())
.into_iter()
.zip(0..)
.map(|(acc, idx)| DominanceOrder {
orig_index: acc.index,
seq_index: idx,
rank: acc.rank,
crowding_distance: acc.crowding_distance,
})
.collect::<Vec<_>>();
assert_eq!(self.individuals.len(), best_order.len());
best_order.into_iter().for_each(|order| {
self.individuals[order.orig_index].solution.state.insert(SOLUTION_ORDER_KEY, Arc::new(order));
});
self.individuals.sort_by(|a, b| {
let a = Self::gen_dominance_order(a);
let b = Self::gen_dominance_order(b);
a.seq_index.cmp(&b.seq_index)
});
self.individuals.dedup_by(|a, b| {
let a = Self::gen_dominance_order(a);
let b = Self::gen_dominance_order(b);
a.rank == b.rank && compare_floats(a.crowding_distance, b.crowding_distance) == Ordering::Equal
});
}
fn ensure_max_population_size(&mut self) {
if self.individuals.len() > self.max_population_size {
self.individuals.truncate(self.max_population_size);
}
}
fn gen_dominance_order(individual: &Individual) -> &DominanceOrder {
individual.solution.state.get(&SOLUTION_ORDER_KEY).and_then(|s| s.downcast_ref::<DominanceOrder>()).unwrap()
}
}