#[cfg(test)]
#[path = "../../../tests/unit/algorithms/clustering/dbscan_test.rs"]
mod dbscan_test;
use hashbrown::{HashMap, HashSet};
use std::hash::Hash;
pub type Cluster<'a, T> = Vec<&'a T>;
pub type NeighborhoodFn<'a, T> = Box<dyn Fn(&'a T, f64) -> Box<dyn Iterator<Item = &'a T> + 'a> + 'a>;
pub fn create_clusters<'a, T>(
points: &'a [T],
epsilon: f64,
min_points: usize,
neighborhood_fn: &NeighborhoodFn<'a, T>,
) -> Vec<Cluster<'a, T>>
where
T: Hash + Eq,
{
let mut point_types = HashMap::<&T, PointType>::new();
let mut clusters = Vec::new();
for point in points {
if point_types.get(point).is_some() {
continue;
}
let mut neighbors = neighborhood_fn(point, epsilon).collect::<Vec<_>>();
if neighbors.len() < min_points {
point_types.insert(point, PointType::Noise);
} else {
let mut cluster = vec![point];
point_types.insert(point, PointType::Clustered);
let mut index = 0;
while index < neighbors.len() {
let point = neighbors[index];
let point_type = point_types.get(point).cloned();
if point_type.is_none() {
let other_neighbours = neighborhood_fn(point, epsilon).collect::<Vec<_>>();
if other_neighbours.len() >= min_points {
let set = neighbors.iter().cloned().collect::<HashSet<_>>();
neighbors.extend(other_neighbours.into_iter().filter(move |point| !set.contains(point)));
}
}
match point_type {
Some(point_type) if point_type == PointType::Clustered => {}
_ => {
point_types.insert(point, PointType::Clustered);
cluster.push(point);
}
}
index += 1;
}
clusters.push(cluster);
}
}
clusters
}
#[derive(Clone, Eq, PartialEq)]
enum PointType {
Noise,
Clustered,
}